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PREFACE

This is the forty-seventh in a series of reports growing out of the study ot

radar cross sections at The Radiation Laboratory of The University of Michigan.

Titles of the reports already published or presently in process of publication are

listed on the preceding pages.

When the study was first begun, the primary aim was to show that rada--

cross sections can be determined theoretically, the results being in good agreemeni

with experiment. It is believed that by and large this aim has been achieved.

In continuing this study, the objective is toe etermine means for computing

the radar cross section of objects in a variety of dierent environments. This has

led to an extension oi the investigation to include not only the standard boundary-

value prolblems, but also such Lopic, as the emission and propagatimn of electro-

magnetic and acousqc waves, and phenomena connected with ionized media.

Associatrd with Jhe theoretical work is an experimental program which

embrac -  "a) measurement of antennas and radar scatterers in order to verify data

determined theoretically; (h) investig~tio., of antenna behavior and cross section

problems not amenable to theoretical solution; (c) problems associted with the

design and development of microwave absorbers; and (d) low and high density

ionization phenomena.

R.E. Hiatt

__X
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I

INTRODUCTION

Th's is the first of a series of reports aimed at summarizing tne available

information about the sctering properties of selected bodies of simple shape.

Perhaps the sitpl,, of all shapeb is the sphere, and it is probable that more has

been written about this one body than about ali other bodies put ether. To detail

all of the results in one repr is therefore impossible, and iu seeking to summarize

them so as to provide an intelligible account, an author is compelled to restrict him-

I elf to those theories and those methods of solution which he feels are most signi-

ficant.

In taking as the subject of this first report the diffraction of electromagnetic

energy by the sphere, our object is to gathe-' together in one place soine of the more

useful forms of solution, both exact and approximate, giving also a brief account of

thc me hds of derivation. Wherever possible references are given to tabulations of

tite functions and series invelved, particularly L. zr_.i-ztion with the standard Mic

solution.

Section II ie. devoted to the Mie solution and since this is the starting point

for most of the other approaches, a detailed discriptioa is given. Certain special

9pplications are discussed, und references are given to computationr based on thr.

Mie series.

I
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For sufficiently low frequencies an alternative repre6entation of the solution

is possible in which the field components are expanded in ascending positive integral

povers of ka, where k is the wave number and a is the radius of the sphere. The

corresponding expansion for the far field amplitude is the s- :ailed Rayleigh series,

and this is dpacribed in Section III. Two derivations are given: in the first of

these the series is obtained by expanding the various terms in the Mie solution, but

in thp speond the !w frequency expansion is obtained directly without any explicit

reference to the Mie result.

Section IV is concerned with the high frequency scattering behavior and the

approach which is adopted is based on the Watson t-nsform. In recent years the

Watson transform technique has Leen generalizerd to an extent which permits the

asymptotic solution of a large class of diffraction problems, and the general method

stems frcm the fact that Iociiv all convex bodies with radii of curvature much

larger than the wave!e.-, "h are similar to a sphere of radius equal to that of the

conve;" -od ly in the direction of energy flow. This local analysin led Fock [.4.1 to

construct certain universal functions which have been computed and tabulated by

Logan 119593 . Since this material dues not appear in any standard refei ence, a

relatively detailed expis'tion Is given.

In the final section the physical optics approach is considered insofar as it

itplies to tne sphere problem. The approximate expressions for the current

1 _ _ _ _ _ _ _ _ _ 2 _ _ _ _ _
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distribution and for the Aar field are compared with the exact expressions dt rived

from the Mie series, and a numerical comparison for ka = 1C is presented.

Although the previous methods have covered the region of 'applicability' of physical

optics, it was felt that this approximate but well-known technique should be included

both for historical inicrest and because of the ease with which rough and ready

answers can be obtained thereby. For a general and more critical exposition of

the physical optics method, the reader is referred to Baker and Copson [19.5I0.

3I

___ 3 ___i i
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11

THE EXACT SOLUTION

Fnis section is devoted to the exact sdlution of the problem of scattering of a

plane electromagnetic wave by a sphere. A brief account of the derivation is in-

cluded since almost all subsequent computations and approximations rly to some

extent on this exact result. In addition to the homogeneous sphere and the important

limiting case of perfect conductivity, results for two concentric spheres are also

presented. The simplifications stemming from the "far field" assuiipti arc "o

discussed. A guide to computed results available in the literature is presented and

some representative curves are included.

2. 1 The Mie Series For the Sphere

The first exact solution for the scattering of a plane wave by a homogeneous

sphere is usuaily attributed to Mie k90j although much work was done before then.

Thompson (1893] treated the perfectly conducting spiere with equal rigor, and in

lis exhaustive work on the sphere Logan [1959 ghics precedence to Clebseh r8631

Nevertheless the series solution for the sphere in terms of spherical wave functions

is usually referred to as the Mie series and this general usage will be employed

here. Descriptions of the solution abound in the literature, the most popular, per-

f'haps, being that given by Stratton 11941] and it is his presentation nn which te

present account is based.

1. _____4
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The problem is that of determining the electric and magnetic field vectors,

E Ei+E s , andH=HI+H s

(where i ane; c denote -.-c;ndcnt and scattered respectively). ,xternal to a homo-

geneous sphere of radius a, permeabilityul, permittivity el, and conductivity s,

in the presenci- of an incident or primary field given by

i ,-ikzE E 0x C(2 1 +

- I. (ikizHi=-H ye

A rectangular Cartesian coordinate systelit (x, V. 7) :;as been employed in which

eqns (2-1) describe aplan wave travel' ing in the direction of the negative z-axis with its

i k
electric vector confined to the x direction. H YE , where Y= = is the

o o Z W0/o

intrinsic admittancc of free space; k is the propagation constant of tiw xnedium in

which the sphere is imbedded, itich medium is assumed homogeneoms, isotropic,

and a perfect dieeeritr and is here taken as free space. In terms of the permittivity

and p cfpiaibility,
2)

wherek it; the wavelength. M. k.s.units are employed and the harmonic time factor

- M has becn suppressed. The restriction to free space --: an trivial one because in

[mediu.,- characterized by c and u different from their free space values, a pro-

.ugation constant k may be defined as

An underlined symbol denotes a vector and a crret denntc. a unit vector.

5 .... . I



THE UNIVERSITY OF MICHIGAN
3648-1-T

k ,(2-3)

Similarly, if the conductivity s is non-zero, the propagation constant can be taken as

49 + ' 's ) (2-4)

It is convenient to have the center ot the sphere coincide with the origin of the coor-

dinate system. This detracts ;;onc of the geaiera-ity and permits the use of spaerical

polar coordinates (r 0, 0) where

x=r sin9 cos,, y=rsinG sin0, and z=rcosO, "2-5)

in terms of which the surface of the sphere is s::.,- - a (see Figure 2-1).

The free space, source free, Maxwell equations are

at

\eqtos rr u r a0, (Z-w

V. !I=V- E=0

After suppressing the harmonic time variation these eciutos require that all field

I th
quantities exterior to the sphere bf- solutions of the vector wave cquation.

1^(VA .F)=k 2 F . (2-7)
.re anei _.Ei, 5Hi

eor I s. Interior to the sphere, E and H must satifv

7V .F)kj , (2-u.

where k, is the propagation constant for the :iaterial comprising the sphere.

ii i i r___ __ _ __6 6 .
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FIGURE 2-1: SPHERi GEOMETRY
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The boundary conditions are really continuity conditions atthe surfacc of the sphere, i.e.,

A i S|
r^,%E +E ) r= E

- - Ar = + =a- (2-9)

AAr (H " I H + r AHLlr=a _Jra-

General solutions of the vector .ave equation can be generated by vector

operations on the solutions of the scalar save equation

(V 2 +k 2 ) =0 , (2-10)

in the following way. If t; is a solution of tqniz-10) then the three vectors

L-

M =V(r )(2-11)

are orthro.gon-l solutions of eqn (2-7). Iliese are known as Hansen's vector wave

functio... havingbeen proposed by Hansen l935. 19"6. 1937] in his work on radiation

from antennas. They are discussed more fully by S-xarton [69D]and Senior L19G.I .

Since field quanuties are rcquired by Maxwell's equations to be solenoidal,

or divergence free, the fact t&-at

+ 0 (2-J2)

shows that only the M and N vectors can be involved in their representation.

______8
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Th,- appropriate scalar wave function - will differ depending on whether the

field point lies inside or outside thy sphere. The two forms are dictated by the

re4uiiements that the field remain finite at he origin and that the scattered field

obey a radiation eondition at infinity.

Thus. within the body, j (kir)Pm(cou)Csm 0. (2-13)

n n sin

whilst for the exterior region .=h(k r)pm(cos6 :J m 9, (2-14)
n n sin

where Pm is the associated Legentd-e function defined in ten5 of the hypergeo-
nm

metric functi, as m lnpm (-1) -- x
n (1':= r- - . 2 l -,nl .- ;-,- )

and jn and h are the spherical Bessel and Iak. functions resjw-1 ively defined by

F-J gx. hW=0-77 I (1) W (x15

The use of the Vankel functirn of the first kind to represent outgoing wa-'s at infinity

is ne:essitate *y the assumed time deperdence, e Since the field must be

continmmes and single-ualued throughout the region external to the sphere, m and n

c--i t.-e a n ,.nly integral values.

If the expression for , given in eqn (2-13) is now intrcduced into the

eqns (2-11) defining the vector wave functions T-, M. and N, these functions take

This is c nsistent with Stratton (1941) but differs by (-W)m from most standar'!
,:athematical works.

i ,, 9
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the~ foflowing forn-.:

C inn sn n sin A

in - t kr)P' (cos G)" in0rsjn& n n COS 0

in I
Sine the in -uanitis nr osa tn aes geea epesin o h

C mn kr n s in k r 1 -D n sin

M -
S~mcs 

)sn



THE UNIVERSITY OF MICHIGAN
3f48-1-T

":here the coefficients A and B e ini-'. - only the pr,=agation constants knln omn

o 0
and k, and the sphere radius, a. From %buxwei*- crv " -s (2-6), it is seen then

that

H (B M (2) +A N (2)  (2-18)

M=o mn mn nmu mnu
0 0 0 0

where the coefficients in this eqaation arc tie same as in eqn(2-17).

......... i~-ie most general expressions for the fields within the sphere

(r<a). are

E=E CD (C M(3) +D N (2-19)
_-- oL l ee -c C - e

m-o n=o nn n r-.n mn
and 0 c o C

H 0- asV'D M( 3 ) C N ) (2-20
- I-e C -c em=o n=o mu mn mu mn

0 0 0 0

--here the constants C eand D iam iavolve only the propagation constantsC e

radius.

Fo' the incident field given by eqn (2-1). expansions in '-n;s of vector wave

functions are given in Stratton [1941] as

2n+1 ()
E E (-i)n  (M% +iN ) (2-21)

0 ,1T 1) 1in l..
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an d(s i2-22)

No terms corresponding to n10 oc;:.:r because (Cos 8) 0.eatos

Straightforward substitution of eqns (2-17) wo (2-22) in the continuityedin

(2-9) now, leads to the following- values for the unknown coefficients:

A BJ = C = DI z . for all mand n.
Cint 0)3:, ruin omit

A :m =B =nnC on=D en=0.forw. !lIamdall n.

n 1 Oj nikafkan (k-iia TdJkm2)4kan1(kaA
out n~n+1) ,u. fkj.w ka h (kafl-ujh aJk~aft 1aU

nP "
(ka) ka;__ .k)1ai(ka9'

is flit']l 2n+1 onkl~l I ka31. nk)k
eln n(nfl) pj ka4Lh ( fj& h (W kj ka i'ka

n k4 k n L - n oag

(-i (2n+) j*,a
D ktj n(ni)ttka9 (kafkini (ka)j -vpj(k,,a)i(l:a ~i (ka )J

(2-23)

where the prfne dnc: %%fretaion t:~, respect to ka or k~a as ap~rroprlate.

The situation is considerably sqimpler in the important case wheon I'.; eon-

dclivity of the sphere becomes infinite (TIn m w) The continuity cvnditv-rn

.-n(2-9) :s then rvplaccd by The boundAary condition -

___ ___
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A Ira 0 o (2-24)

sincte no fields can cxist within the s!,ere. and making use of the asympotic forms

of the spheri Bessel and tiankel functions, the coefficients. in eqns (2-23) becne,

-"n nr+l) h (ka)

() 2n+ n J2-25)

, (z+l) 1ka

C =D =0-

2.2 The Mie Series For Two Concentric Adioining Spheres

The m.ore complicated probem resulting when t1xc sphere is not hom-ogeneous

but- consists of a homo tnfxc-.--s-ph---c covered with a homx-egenas laver of different

naterial, has been soled by Ad-n and Kerker [395-1 . The geometry is essentisily

the same Jr. pictured in Figure 2-1. exct for the add tion of a surface laver of

thicknss d, andthis is shown in Figure2-2wheretbr '&ir -xis and incident L

field point out of -he poge.

Consistent* wi!h the notation of th- prcvzazs section, the inner sphere of

radius a will be characw ri'ed by k1 , cl. P1, sz; thc a.er by k2, C2. P,, sl.

'I tM. whole spherical structure of radius b = a+d till be :rn hxkled ir "re

space ciracterized by k, co, and pa "

13
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FIGURE 2-2:

In each region the representations of the field quantities are different. For

the Inner sphere and for free space, the representations are similar to those used

in section 2. 1, viz

r~b

i+E s = I s

0L~ n(n+I) 'bin -eln n(n+1) Meln -oin",

+13 N 2 _2) (2)

E.~ (An' 2  (2 H)I11: (B +A N )(2-26)+tolr. n-eln n"l n-ln nN= H~io..~ el of

FPjr conve~nience the coefficit nts are written A., B ,etc., rather than t

Ben etc.n n

1 14
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r<a

( C .-i() +DN(3) P 01iE-' DA)+ -()(-70 t n -oln n-ein - W'n n-eln n-oln

while in the layer ae r<b

E ( n 40 +  M (5) +  N(4) + 9)
- OO-cln n -oln n-eln n-eln

(2-28)
:E(4 +~ N1 ~ a"(5) +a

- wi 2  n-eln n -'eln n -oln n -"oln

where the superscripts on the wave functions indtcate the radial functiom wich

occur. ThusM ( . ) and N (1 ) , defined in eqn (2-16), ,"ntain the radial function

Jn(kr). If this is replaced by h(kr), Aj(2) and _ (2) result. Similarly, replacing

Jn(kr) by j (kir) yields and ; replacing j (kr) by j n f2r) yields M and N

and by h n(k2r) gives M and (5  The continuity relations require rE and

Ar H to be continuous 2 the interfacea r = a and r = b. This provides a sufficient

nuinbe'- of equations to determine the unknown coefficienta, of ithich only A and

B n the coefficients of the scattered field, are presented here. They arc
An _i)n 2 n+1 in(kb) f, + kh ;n(kb)J f2

n r.(n+l) hn(kb)fl+ kb hkb fh
n 1 n M 2

i (kb)f {kb i(kb)J 4 (2-29)
B r-,"+ 2n+1 n 3

n n(n+b)h f[k hn(kb) '4

1 5 .
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whhere Yi (kla) -

[kia j (k a)

-- n2 _3~ aa - (k2b)-h (k2a)tbj (kb)]J

I 2  , ( ) 1 n
2 pp 2 2ai (ki2a'' h(kb)- lk2ah (k~aJ j (k2b)1

Y Po2 n nkin T
+ fAP jr (k2b)h (k2a)-jn (k a) h n(~

it~ ja j (kja i f(K.a) [k2b h (k2 bi-h (k2a) [k2b j (k2b)) I

4 0 2 in(ka)lkbi (k2bj [kahn(ka]- kan(ka![k2h (k2b

k2 2 . vf,
2 r k.ajn(kua Jn(k2b)hn(ka)-j n(a)h(k2b)
2 n n

+n ka) r> 2a 2b (2-30)

Scharfmnan [1954] considered the limiting case when the inner sphere becomes per-

fectly conducting and the continuity condition at this interface is rcplacce by the

boundary condition eqn (2-24). The expressions (2-29) for the coefficients of the

scatered field are still valid but the f's defined by (2-30) simplify as foi!ows-

L. . 16 - ,
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- J(k2a) k~bni k4b.-h (k2a) [k2bjnk2bi

J(kb)hn(kza)-Jn(kza)hn(k2b)}

)0 " 2bY {hJn(kb(k 2ah(k a"k 2 aJ (k2aj fkjL% (k:,b

f' - h (k - b (2-31)

2.3 The Mie Series For Two Concentric DisjointjS.qhe:es

Vben the inner r.*dius of the layer is larger t~oan the radius of the inner

,sphere, i.e. a plane wave is incident upon a sphere with two layers of different

fmaterial upon it (see Figure 2-3), the problem is even more eompticak!.

Plonus 9611 has treatcd this problem, though not in complete generality.

1The problem is speializ. J in the following ways: 1) the inner sphere of radius a

is perfe, tiv -'onducting; 2) the two regions az r - b and r > c consist of the same

material (here taken as free space and characterized by k, c o , and p.), and

) the permeability of the layer b< r 4 c is also taken to be /o although th: propagatioa

constant k2 is different from k. The procedure is exactly thr same a. before. There

will be three representations of the field in the three regions, two continuity con-

it.uns (at r=b and r-c) and one boundary condition (at r=a).

17
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zIfl

y

x

FIGURE 2-3

Thus for,

E=E +E , and H=H +H

where the quantities are exactly as defined in eqns (2-2)

c),r>h

E and H are given by eqns (2-28) with ;A2=P 0 , and for

______ _____ _____ _____ _____ 18 _ _ _ _ _ _ _ _ _ _ _ _ _ _ -
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b>r>a
M ( 1 )1( ) .Y N( 1 ; + N 1 7

- oln noln n-eln n eln

i Hk 0 k, () (2M) + 41 1 2) (-2
u n-eln n -eln n-oin n')In

At the interfaces (r=b and r=c), 'r% E and '^_H must he continuous and

rA 0raO . These conditions provide a sufficient number of equations to deter-

mine the unknown coefficients. Again only the coefficients of the scattered field,

A and B are presented here:

A _n)n 2 j.kc)f +kc jnL!%eJ '2
n n(n i-1) hn(kc)fI +Lkc hn(kc)j

(2-33)

B = i)n+ ! 2n-1 jn(kc)f3 +[kc J(keJf 4
n n(n+l) hn(kc)f3 + [kc hn(kcf4

,where

-lk'cj kJ nka)(hn(kb)[kbJ (kb -j (kb)[12 h(khb )

-j n(ka(hk.b)k h( kb h '-hn(kb)(k2b hn(k2bj)}
-k2 c hn(k,,cj 't hn(ka' (J (k2b) kb Jn(':'I'-J nkb) ' b jn(k')')

-; (!m)(J (k2b) [kb h (kb)l-h (kb) k Jn(k b
.... n n b n.

I __ ____ ____ ___ ____ ____ ___ 19
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y (ka~jj(kc)( h f blb k~hfb 1 ~h~z~
h( (1:2b)(1,b b (klj-1h(kb)Ikzb h(k2biln L r n I.n fl n l i

A h :ka)1j~kc hk (kzbt'i kbjJ-h (kb){k1 hk1i)

-h' ka(ka~j (kc h(kbc) (kb)- tbhb)h(kb)bLkbhi.khbj)

A 1~ M(c) (( tkb k (k2b) i -~(~) tk hb)

f- jkah (ka[kc fk2c(j (( Y h (kb kb h (kb-h(kb)Ib h(kbn n k2 n *n Jn nj

[ .k2c h1(Kzcj( lkN' k''kb ~b]- bb k~)

2

-hjkc)Iah h(k-)1 (j (kb)lkzb h (kbj- ( jkb) kb zb~

- Ikaj (ka)] hn(kb 2  ,b (~ k bk b)2 ~

(2-34)

Wb,:n b=a, these expressions ,o over to those given in eqns (2-31) fo-u *L=z

__- 2
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2.4 The Far Field Amplitude

Of particular interest is the far field or far zone behavior of the scattered

field. Recall that the scattered field (exterior to the spher2 and any layers) is

always written as

Es nS = io (A M (2)+B N ( 2 )

-- 0. fn oln n - eln

(2-35)
S - H (2)+AN (2)

0 n eln n-oln

where the A and B arc iven by eqns (2-23) 1?-", (2-29), or (2-33) dependingni n

on which particular sphere problem is being considered. Regardless of how these

coefficients are defined the expressions for the wave functions M and N can be

simplified in the far field uf the sphere and its layers (if any). Specifically the

| spherical Ha,-kel functions contained in the expressions for N1 nd N can be re-I -
placed by %he first terms in their asymptotic expansion for large argument and

sinceik h (kr)~(-i) e -j j, _ [krh (krJ (2-36)n kr ~- kr rn( 1-)

the 0 and components of both M and N are of equal order for given n. By coia-

parison, tne radial component of N is of one higher order. Consequently. ord,

M~e 9 and 0 components can appear in the far field which then has the form of a

21
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spherically outgoing wave, and from eq.s (2.16), (2.35), and (2.36)

ikr ~ I / P(oO
ESE eL ()n~l n +iB -( (cos

o k n +iB n kr In=1 VA n~ Sion 0)

P1I (CosO 0)
-(A 01(cose)+iB sin0 -)sin0 0(2-37)on a sino

valid for ro> kc, where c is the radius of the entire spherical structure with c= a

for a homogeneous sphere.

This result simplffi'.s considerably for scattering in the hack and forward

directions. For backscatterng (0 = 0),

L sine Jo 2 - .n 0O

giving ikr 01,

E " kn5 i n(An + iB (2-38)
n1 n

and for forward scattering (0 = x)

r[F co =(- Tj4 +1 n(ni4) a - I~m P 1 9)L sin J0--, 2 0 n , -,

ao that
ikr c

E i-k-- 0D n-1 a(n+l)---E k .J __(A -03 (2-39)
n=1

22 __ _ _-
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It is now conv'eniert to introduce the concept of a scattering function f(6, 0).

This will be defined by the equation

ikr A

E 4t-f(0,0) T . (2-40)
0 kr

valid for r>)kc2, whereq is a unit vector in the direction of E " and accordingly

0(, 0) can be regarded as the far :-eld amplitude. From Maxell's equation we

then have ikr

If f( r^*r(2-41)

and consequently the same function describes both the electric and magnetic fields.

For scattering in the backward direction, the scattering function w*ill be written as

f(0), since there is no dept.ndnce on 0, and cqn (2-38) then gives

S n(nwil, .r(n)- (-)U + ! "(A +iB . (2-42)

Similarly, for bect eripg in the forward direction.

ffn .- 1 n(n+l) (A -iH (2-43)

(see eqn (2-39)).

Thc definition of 09, 0) given in eqn (2-40) differs from that usurlly adopted.

The function f/k correspw-ds to the scattering lunction more commonly defined. but

tN--s has the disadvantage of not being dimensionless. In electroma,".netic iheor;

23.
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(and. indeed, in all bran-hes of physical sci.nc) there seers tv te every advan-

tage attached to usiig a non-dimensional function, and it is for this reason that

the present definition has been chosen in spite of the fact that it represents a

break from conxvnional notation. As defined above, the function f is independent

of r and can be likened to a polar diagram factor. It depends .- on angular

variables 9 and 0 ar on the properties of the scattering body. and is sufficient io

specify tho far field in its entirety.

It is a simple matt-,' to calculate the scattering cross section in terms of

the function f. T1he differential cross scc.: o .sr histatic radar cross section o(a 0)

is defined by
2

o 1(01= l -W C 4z r2  i (2-44)

and hence, irom eqn (2-4u',

o(,,0)--= ln04- (2-45)

An a' r..tive expression is
0. - 1e.0 (2-46)

where X is the waveic-gth. and the dimensions of a are here made exr icit.

The total scauering cross section a T is related to o(O. 0) by the ec:untion

0= -Ljo. 0d n2 %2-47)

where d!2. is an element of solid angle, and by inserting eqn(2-45) we now have

...... . 24
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GT (0 (2--48)

An additional relation between aT and f is provided by the "forward

scittering theorem". This was first discovered in atomic theory and since then

its electromagnetic equivalent has received a variety of ibsdependent proofs (see,

for example, Schiff L1954]. Jones [955, and de Hoop [95 ). The theorem is

merely an expression of conservation of energy and leads to the equation

T= Im. f(r) (2-49)

where Ir.. denotes the ima.gin-ry part. li adjitinn -t he scattering function and

cross section defined above there exist many quaistiut-s in the literature with

similar names but different dfinitions. This unrfcrtunate situation is virtually

uncorrecainle at this stage and the best one can do is exercise care i checking

tdefinitions and be re'.igncd to the Pact t at many existing results may require

renormalizat-an lefore tue. Some of the more common quantities are prescnted

here.

If the scattered far field is written

s=E %+E E,2-50)

I here E. and are defit ed in te-4-n (2-37). then ih -c-mpunents Can be expressed

i-. the form

_ _25 __i25
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ikr
E; = Eokr-

ikr
S=- ' sin 0 -.E)
0O o kr

where S(0) and 2(9) are defined by referring to eqn (2-37) and are called the

complex amplitudes of the scattered radiation for the two poiarization-.

The squares of the absolute values of S, and S2 are called the intensities of

scattered radiation for the two polarizations.

The absorption cross section a and the scattering cross section a are

defined as P
a

= (2-52)
a P.1

P
Sa=- (2-53)

I

iere P i tic rower absorbed by the ' stacle, P the power scattered. and P°

the p:wer incident. If no power is absorbed in LhL obstacle and the surrounding

medium is non-dissipative (e. g. free space), then Ga is the same as oT defined

above.

The sum ' - -q is known as t., extinction cross section and in cases where
a S

a is non zero cqn(2-49), the forward scattering theoreminst be a.tL red to rcad

a u o= Ir. f(:) -(2- 4)

a s

26 A
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The various cross sections defiwd, i.e. differential scattering. toal

sctaering. absorption. and extinction are reterred to as efficicncies when nor-

malized to the geometric cross section which:, for a sphere of radius a. is r a.

Thus a a- a2s

is the extinc-ion efficiency. etc.

2.5 Computations

Kerker 19-551 summarized the then available Mie theory functions and his

table is reproduced here for convenience (Table il-1). To this has been added

the work of Scharfman ji 9 i4j which gives the back scattering cross sections of

various dielectric coated spheres. Also appended are the highly ac -- rate tables

-of the back scattering function [(ii) for perfectly conducting spheres presented

by Hey, et al L1956I -

The recent ,-).k -f vande Huist [957) is an excellent sur mmary of work on

scat -!i'.g by spheres. Chapters 9-14 of this work are of psrticular interest to

this study since they contain many tables of calculated quantities as wiell as a list

of references conttaining other tabulatcd quantities. Tablc M-2 presents a b-'ief

listLng of the tables given by vandeHulst. Table 11-3 ia a similar listing af the

jgraphs to be found in %andeHuist's volume.

27 ... ..
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TABLE 11-1: LIST OF AVAILABLE MIE THEORY FUNCTIONS

Index of Values oi
R~ference Refraction +  ka Quantity Calculated

Shoulejk'n [1924 1.32 1,3,a) Scattering functions every 20

Blumer I! 9 2 i , 1.25 0.4,0.6,1.6, 4,8 Scattering functions every10o

11931J 1.33 1.5,3
1.5 4
c. 0.1,0.5, 1. 3, 5,10

Stratton and

Houghton E193! 1.33 0-40 Scattering coefficient

Caspersson [1932] 1.63 0.71-3.16 Scattering functions at 00, 450, !

1.56 (17 values) 900, 135 . and 1800

1.b0

Gurnpricht, Sung, Chin,
and Si iepcevich F1952 1.33 68. 10-35(0) Scattering functions ever, 10

Gumpricht and 1.33 20, 30, 40. 6. 81, Scatterr.r coefficient
Sliepcevich fi9J5 100,200,400

1.44 20,80,150
_1.20 20,

Kerk.Vr and Perlee 2.00 1.30-2.8n Scattering functions at 900
L1953] (12 values not in

Lowan tables)

Kerk r and Cox [955 2.00 3.0-b.%- (11 values not Scattering functions at 1300
in Lowan tables ....

Engelhard and 0.4,1,1.5,2,2.5,3, Scattering functions every 10 °0

Freiss 09371 .1.44 4. 5. 8

Paranjpe, Naik, and 1.33 4,5, 6, 7, 8,9,10,12, Scattering ful- Lions every 100
Vaidya [1939. 20, 30
Ruedy f[194:4 F1944j 1.33 1/8,1/4,3/8,1/?, Se;ttcring coefficient

(centisued on next page)

Index of refraction m = 6 -

---- 28 WE 1-
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TABLE II-1 (continued)_

Reference Indcx of Values of Quantity Calculated
Refraction ka

Houghton and Sc'attering coefficient
Chalker 1949 1.33 7-24 (33 values)

Lowan 1948 1.33 0.5-6.0 (15 values) Scattering functions every
1.44 I00 and :.Lattering coc±fficient
1.50
2.00

4.21 - 2.51i 0.100-1.00(.05) Extinction coefficient
1.0-3.0(. 1)

5.55- 2.851 0.10-1.00(.05) Extinction coefficient
1.0-2.0(. 1)

8.18 - 1.96i 0.100-1.00(.025) Extinction coefficient
3.41 - 1.94i 0.10-1.0S) Extinction coefficient and

1.0-5.0(.1) An and Bn

7.21 - 2.65i 0.1000-1.000(.025) Extinction coefficient
1.00-1.30(.05)

8.90 - .69i 0.10-0.30(.01) Extinction coe'lcient and
0.300-0.430(.005) A and B
0.43-0.60(.01) n n

Riley 1949 1.486 0.5-3.0(.1) Scattering functions every

___10o and scattering coefficients

Aden 1950 i.01-U..3i 0.6-6D Scattering functions at 00
o 0.6-6.0

Gumpricm and 1.20 1-6(1) n. and B
Sliepcevich 1.40 8
1951 1.50 10-100(5)

1.60 100-200(0)
200-400(50)

1.33 4,5,6,8
1.14 10-i00(5)

100-200(00)
200-400(50)

(continued on next page)
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TABLE U-1 (continued)

Reference Index of Values of Q
Refraction ka

Kerker, 0.126 Backscatteringby particle con-
Langleben and sisting ' two concentrie spheres.
Gunn [i951 Inner sphere m=1.75, outer sphere

m=8.9-1.5i

Scharfman 51954 1.26 Backscatteringby lossless dielec-
L .a tric coated perfectly conducting

sphere. Outer sphere 1. 6m w.

Hey, Stewart, Pinson O 0(.01O Backscatteringfunction f(O).

and Prince 195L_-

+

The actual quantity tabulated is V2, not f as listed at head of each column

(see Hey and Senior u9583).

TABLE H-2: PARTIAL LISTING OF TABLES To BE FOUND IN VAN DE HJLST

11957]
Refractive 27 a/k Page
Inde,'. r- No. .Quantity Calculated

ro .1(.I)1.6
1.8-90 161 Efficiency factor

.8, .93,1 le: Maxima and minima of thp extinction

1.33,1.5,2 - 178 curve.

m close to 1 180 Extinction Psud -absorption by partially
absorbing spheres.

coniplex - 273-274 Complex values of m for which compu"a-
tions have been made.

3.41-1.941 Extinction coefficient and intensity
7.20-2.65i,o 1.3 27'1 functions.

1.50-1 n' .5-7.0 295 Extinction by spheres.
(n' small)
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TABLE HI-3: PARTIAL LISTING OF GRAPHICAL PRESENTATIONS OF DATA IN
VAN PD HULST fl957

Refractive
Index, n 2ra!X Page No. Content
2 0-4 137 Phase angle vs 2ra/-
2 0-1-. 151 Extinction curves of sphere
1.55
1.5
1.44
1 33
1.25
2 1-6 152-153 Scattering diagrams
1.55 1-6
1.33 1-5
1.50 1.2-2.4

O 0-5 162 Efflc.-' "zy factors for extinction and for
radiation pre.ssure.

0D 0,2-10 163 Scattering diagrams.
1.5 n-20 177 Extinction curves comizted4 from Mie's
1.33 formula.
I -

.93
'1.33 10 236 Scattering diagrams.

1.33 30,3540 260 Intensity distribution.

1.27-1.3i 3 276 Efficiency factor for extinction, radiaton
_ _ _pressure, absorption and scattering.

1.29(1--' 0-20 278 Variation of extinction curves if the
inlagi r., r.c-t of the refractive index is
varied.

8.9-. hi 3-1. 5 283 Eitinction curves (showing resonance

8.18-1.96i reaks)

co 0-3 285 Radar cross section o comixiterl for

3.41-1 94i backscattering 1y watei drops at

X =3rnm.
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Some representative bistatic cross section curves for a perfectly conducting

sphere are included here (Figures 2-4 through 2-20) to indicate the behavior of the

sphere as a scatterer. These were computed at Air Force Cambridge Research

Laboratories and appear in King and Uu [1959]. The back scattering cro~s section

as a function of ka tor the perfectly conducting sphere is also given, Figure 2-21.

This was plotted from the tables of Hey et al [1956).

3I
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FIGURE 2-21 : BACK.SCATTERING CROSS SECTION FOR PERFECTLY

CONDUCTING SPHIERE
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LOW FREQUENCIES

At low frequenires the scattering function f(0, 0) can be - ,panded in series

of ascending (positive) powcrs of k with coefficients which are functions of 9 an p.

Associated with each power of k is the corressponding power of a parameter I

having the dimensions of length, and since f(0, p) is independent of r, this parameter

must be a characteristic of the scattering body It is obvious that in the case of a

sphere the parameter is the radius. For sufficiently small values cf kt this expan-

sion is absolutely convergent (a fuller discussion of the convergence properties Is

given in section 3.4), and is generally referred to = the Rayleigh 6,cries for the

xody in question.

The present section is e6airely concerned with this expansion, and the

purpose !z not only o dr, mi.,e the form of the series (i. e. the powers of k which

it conta --. but also the precise coefficients of the vwri-us powers

In section 3.1 the series is obtained directly from the Mie solution by ex-

panding for small argument the spherical Bessel and Hankel functions occurring ir,

the solution. In so doing the aim was to set down explicitly a significant nur.;L-er of

terms in te expansion, and presented here are the first five terms in the expa-%Si.,,

fo-.- the real part of f(0, 0), together with the first four terms in the expansion -.r

the imaginary part. The resulting expression for the scattering iur.ction th,-n

_ _ 1--_51_. .. ..
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includes terms in p where p - ka

In seczion 2.2 an alternative method -s developed whereby the Rayleigh

series is obtained directly without an reference to the Mie soub,'ion. arid without

ever having to solve a lx)undary value proLAvum as such Ther% is co limit to the

number of terms which can be calculated in this way, and while the derivation of

the higher order terms can bec-ome tedious, #-e 'abor hB r: worre than that

involved in the expansion of the Mie coefi-cients. In addition. the -a!clation is

partially self-checking.

One of the main advantages of this new apprt;ach is the promise whlz- it

holds of being applieable ta other (and more genervl) kodies for which t.,e exact

AMie-tvpe solution is not available, but even with a spherically stratified sphere it

may be quicker to use this method to obtain the frst few terms in the Rayleighf

series, and it se-tion 3.3 the leading tern,. for a dielectric coated sphere iE=

cealpul.

3.I Derivation from the Mie Series

Since tise exact solution for the sphere is known in the fer:., of the .'-e I
series it is only necessary to expand the radial functions for smnall o ;o CNaln tit i

Rayleigh series-

The coefficients of the vector wave functions for a perfectly cc iictin-

sphere are given in eqns (2-25), and nsing the fact tbat
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(( Pi f 2) 1

m,

h 2_- _ _. i -
n 2 m<,,,+-O mI0 m! (m-n-H

(3-2)

we have immediately

1 3 3 p2 i 3 2 5 11 6 71i 7
A -- "P_ tp 4+ 7 " P - 7- 1-5- p

67 3 1151 i P) + 1!3)T65 P + 233"--

3 2 + 1 3 3 4 +2i 5 17 3 79 7Be. "lP 10 P 3 p -F p 5 " -TT p - 3 ip

133 3 1733 i 9 + "-
33o 2335 p 9)

A p 5 - 2 i 5 5 pP6 + + 0 . ..,A + +

B .L5 2 + +Li 5  5 .PS' 642 T 108 30 2i-P :6412 T6~

A p7 7 p2 7 + (13)
Ao13 270 !- "5- 8253

.. . ... 5 3 -
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i 7 (__L 2 91 4) 13: - P- - - + oPel3 202- o 0 0

_ / ,( - (+  13
o14 20M-~512 77 /

1 91 (153) 21
Be14 (420)2 150 P + 0(p)

A015 1 11 O0p0)

5 "-300945)2

e15 (4725 + 1

For n A o .d B are 0(p).
oln On

The above .xparts.ons are sufficicm to specify f (0, 8) correct "o O(p ),

but rather than write down the resulting series for arbitrary 0 and 0 we shall

concentr ae on the particular cases of back and forward scattering (91: 0 and r

respectively). .ubstitution into eqns (2-42) and ,4;hen gives

i
f(3) P 3 1 Z 17 4 6651923 6 249170261 R

2~o) f -0 _6.-+ ' 7938000 1875352500 p
J

- = io { 5 , =1951 P - 6 + O") (.S:
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f 3 113 2 1-W 4 F70057 - 8369355737 a
2 ~ 'Pt -00P rjO- - 793800 P 68376252500P

-5 6 2 2137 4 5609 61 (13
+6 25 P .C'4-5W P 6700

3 2 The Alternative Alethod

in order to ilustrate *he term-by-term technique for deriving the low

frequency expansion it is convenient !o consider once again the problem of thm field

(eq.;s (2-1)) incident on a 1'rfectly co,.ducting spherv.

The first step is to postulate a general z.xr-.ssion for the scattered field

and the obvious form is that shown in eqn (2-35). Each of the rector wave

i fmctions 3_ ani , involves the radial distance r through The Hankel function
Main --ln

h n(kr) and its derivatives with respect to kr, anu consequeniy any pwer of r is

i always accompanied iby a like rowar o1 c. Near to the surface of the sphere r ',

and for s-L .eieniy smali values of kr (th.t is, for suflicintly low frequencies)

h(kr) [k- I . n [h"(n

As a result, all the components of Neln are of equal order in the near field (in

-- trast to -beir behavior in the ftr fie!-,, while ihe compunents of 3io Lot he

sa-.e valhae of n are of one higher order If, therefore, the product Bell -t s

remain finite in the ncar fieid as the frequency decreases indefinitely, it i.

IW5
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necessary tl:at

Be,1 c k3

and since B el is diner.sionless, k must be associated with a length parameter

which can only be the radi-. of *he sphere. Hence Bell ' 0 (p3 ) for small p, ard

from a consideration of th higher powers of kr in the expansion of -L [kr hn (kr

for small kr we are led to write

B ell p3 (13 1 0 + p 1 -p 2 3 2 + p3 313 + ..... ) . (3-6)

Similarly

5 2

Bel2 = p (320 + p0321 + p2P22 + 3023 . ..... ) (3-7)

and so on. Any of the above coefficients may, of course, be zero.

For the product Ao1. M') n a like analysis would suggest that the expansion

2
for Aoal should starL with a term in p , but by choosing instead th., cypression for

the magntic field neam to the surface (so that A,,, occurs in combination with Noll

ft is seen that the coefficient of p2 is in fact zero We zherefore take

-- {.3 0( + J +  2 3 (3-a)

analogous to equation (3. 6), and similarly

5 .2 3
A -p (a,+

etc.
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At the surface r -- the boundary conditions require the varishing of the

tan;ential components of the total electric field, and substituting the expressions

for E and E , we have

r~P o I [h()j:~ Cos 0 ,
ol 'n 56 (o.9 BI.n- Pn~ sin 0 0

L (3-10)

and

X OOS + ~ ~~oinhn Pn kos')
X~co coe % h() + (B fp Lp)'~nPJ~ 4 (Cos0)} 0,

(3-11)

where a

X = e n:) (-12)

Since the expansions for' (p) and h ( ) are known, the coefficients a.. and

B in t! - expansions f-r the A and B can now be determined bv euting to zeo

the coefficients of each power ef p in equat'ons (3-10) and (3-MI.

In both equations the lowest power cf p is p and the coeffiaient is made up
of a contribuf ion from :he sipgle ve,for wave function N el and the Btatic tel n' in

the incident field expansion. To this order ii p the two boundary conditions reduce

to

(I ' I I) -7
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and

( n10 co1 1 C 0=0

/ iving

The Eecond atage in Ehe analysis involves the terms in r. Contributions

from the two f'uther wave functions M-oll apd N e are now introduced, together

with a contribution from Nel, and are matched to the second term in the iizcident

field expansion. We have

-icos0 - ici1ocose + i -+ 13i20 cos (i=0

-i Cose -iO + i. cos + 18 ig 20 cos 20 = 0

and by identifying coefflcents 3f like trigon-metrical functions in each equation, it

is found thatI il=, "io 2 02 0 36

Continuing n this manner the variou terms in the expansions of the Ao.1

and Be, can be derived, but since the analysis is so entirely straight forward there

is little point in including further stages. Suffice to say that the results are in

accordance with those given in seciioa 3. 1.

On the other hnd, there are several features of the method which it is

desirable to point out. In the first place we remark that the analysis at ea.!h stage
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is to some extent self-checkz.g, :n that the nth stage provides 2n + 1 sp.!f-consistent

equations from which to calculate 2n-1 uifnowns. Moreover, the nth stage (which

brings in contr.jutions from the wave functions M oln_1 and N el) requires that

'n-l 1- n-3 30-5 5 . ........

and an-2 Y an-4 3' a n-6 5 ....

all have the value zero, and therefore introduces no new power of p into the

expansions for the corresponding coefficients of the vector wave functions. In fact,

each stage yields a cor ection term to tMe enpdr.sion for either Aolr or Bel). i . 0),

but not both, and since Aolr and Bel r ara of the san& order in p, two successive

stages are needed to give a new order of correction to both the-.- coefficients.

A further poiat of inlerest concerns the real or imaginary character of the

1i and the j 3 At every odd stage in Lhe aiaiysis ian even power of p is matched

" to a like power of o In d.- incident field expansion, and from eqn (3-i?.) it is

! apparet t i this implies the matching of the appropriate a.i anid 13j to a real

coefficient. In contrast, the even stages produce values of a j and ;3ij which are

pure imaginary and hence

Sreal !f 4-j) is odd
ii imaginary even

wi.creas

real evenij isimaginary i -jsec~d

I if (I -- ) is

____ ____ ____ ____ ____ ____ 59 .
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it now 'ollcws that when n is odd all even powers of p in the expansions for Aln and

iBeln have real coefficients (odd powers having pure imaginary coefficients), and

the reverse situation holds where n is even. This immediately determines the

power of p in the expression for f(, 0) which have real or irneg-nary czific*ci.-t,

and reference toeq.. (2-37)shows that all even powers must have imaginary

coefficients, while the odd powers have real coefficients. The fact that the first

imaginary coefficient is 0 (p 6) is a conscquence of the vanishing of a andOil,

which thereby removes the p4 powers. These conclusions are confirmed by

eqns (3-3) and (3-4).

Our final remarks concern the initial stages in the analysis At the first

stage the coefficients of p are matched and this requires that the incident field
-ikz I

factor e be replaced by unity, so that Ei and H . are Independcnt of one.. iother

to this approximation. Moreover, only Bei contrbh,,tea R te noff orcr o , an

conseqtte tly this first approximation has produced a near-field boundary-value

problem in which the electric and magnetic field., are tic-coupled. Although the

coupling Is re-introduced at the secont stage, it may be of interest to consider

why the initial deno-ipllng does not affect the derivation of a complete solution.

The first stage essentially reduces the problem to a static one and g.ves

jnly f0I1 = i, which corresponds to a simple electric dipole. Thus. th. fiirst e;ag-

ignores the magnetic dipole contrbution to the scattered field, which contribution

is of the same order as the electric one, and to obtain the electric field due to

R!
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the magnetic dipole either of two methods can be adopted. The first of these would

require the corresponding first stage in the solution of the magnetic field problem

and the subsequent use of the field relations to determine the contribution tr. Es .

In practice, however, this is not necessary in that the second stage in the solution

of the electric field peoblem re-introduces the coupling between the electric and

magnetic fields and brings in the magnetic dipole contribution. Two stages are

therefore necessary to complete the first approximation to the scattered field, and

the fact that no magnetic field problem as such has to be considered is a direct

consequence of the symmetry between the expreaions for the scattered electric

and magnetic fields in terms of the wave functions Me and N
0l - n

On the other hand, if only the first term in the expansion for f(0, 0) is

required, it may be more conveilent to replace the second stage by the first stage

I of the correspor--lng inagnetic dipole analysis, since this may prove to be a some--

what easicr calculation (particularly for bodies other than the simple homogeneous

sphere). In this case, the whole analysis can be ,Vetsed more concisely.

Taking first the electric dipole problem, the first stage Is 1o match

B N to the unit ,-ector I at the surface r =a using the boundary condition
ell =ell

n (E E ) :0,

ardi since

2 sin 0 Coo *" * 0w & coBs 0- sin 00
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consideration of the tangential components of N el shows that

-1
Bell = I - it "0 V for small p.

P 1-..1 (P

For the magnetic dipole problem the corresponding stage is to iiatch i All Nol1

to the unit vector Y using the boundary condition

n. (Hi + H s)  0,

and in like marneer this gives

Aiu 2 h ° -)-; for tmall p

This completes the analysis for the two near-static problems The electric

dipole miakes a direct contributien to the scattere," electric field, and according to

the first:of eqns (2-35) we havc

_s 3
. A, i p E N  (3-13)

Similarly, the magnetic dipole contributes directuy to te scattered magnetic field

and from the second of eqns (2-35)

H 1-;- '- (3-14)

T 1j ozell

i kom whieh the electric field contribution can be found by using Msxwtll'.

equations. The importance of this derivatio, lies ir the fact that both (3-!Si and
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(3-14) can be obtained by appealing only to statics.

in practice however, the last step (use of Maxwe .'s equations) can be

avoided by substituting the expressions for Aol I and B el directly into the first of

eqn (2-35). We then have

5 3 1
E S a jE (N +i1M )

cI - ell 2 -oel'

which representb ihe combined contribution due to the electric and magnetic dipoles,

and the corresponding far field expansion is

3 kr 3 1
E E - P f - +cos ) cos 0 -(I - cos0) si 0 . (3-15)

3.3 A Dielectric-Coated Sphere

As an example of how the above method is used in a non-trivial problem, we

shall here derive the leading term in the Rzyleigh solution for a coated sphere

(see secrz,.n 2.2).

Consider a perfectly conducting sphere of a....'-. which is covered with a

layer of dielectric of thickness d. The permittivity and p.rnmeabi!itv of the

dielectric are v and u respectively; the conductivity, however, fs zero totherwise

the Rayleigh solution is t'e same, to the first term, as for a perfectly conducting

q he'-e of radius a + d). The whole is immersed in a homogeneous isw-cpic mieiu

which, for simplicity, will be regarded as free space.
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o%.

/ a

FIGURE 3-1

To determine the Rayleigh solution it is sufficient to solve two static

problems and then match these results to expressions involving spherical vector

wave functions. In the first static problem the incident field is merely

E - E x (3-16)
0

and the task is to obtain the scattered (electrostatic) field which this excies. Thi

second problem is analogous in that the incident field is here

H1  ^ - a (3-17)

so ei".t a magnetoetatic field is now involved.

The most general solutions of Laplace's -,natlon are of the form

r. P (m 0 ) Os m
n *l

e mnC

(I)
nr -pm (COS )sio m

e mn n sin
0

64



THE UNIVERSITY OF MICHIGAN

36I4-1-T

and if § is xegarded as a static potential, the corresponding field can be found by

takdng the gradient. In the region outside the sphere the scattered field must be
(2)

expressible in terms of I e alone, but in the dielectric coating both types of

potential will occr.

Let us take flret the electr33tatic problem in which the t;., ident field is given

by eqn (3-16). Since

0)

ell

we have immediately that

E = E 0 e (3-18)

SIfE is the t-al ele,-trostatic field in free space, so that E E E,. and if E

similarkly denotes the field in '.,e lpyer, the houndary conditions at the dielectric

interface (r =a. dl

S" ̂ F =AE'
and

AA I

£ = e n -£E

.t the surface (r-a- of the perfectly conducting sphere the .Iy condi-ion :s

^E' - 0.

in view of the 0 and 0 dependence implicit in the expression(an (3-180for
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the incident field, it is apparent that the boundary conditions can be satisfied by

choosing the following expressions for the secondary field:

(2)
E A 7 (3-19)

ell

(2))
E - B V( ell +.e3-20)

eli eli

where A, B and C are -onstants zs yet . termined. The boundry coiditionanow

give

E + A C+

(aWd) (a4d 3

f I I.
2 J

C0. 0,(~d

.3
a

from r.!± we obtain

b3 b3+2a 3 -C 0(b 3  a 3)_j A = Eb34 b 3 3  ~( - j (3-20)

where b = a-d. If d < a so that powers of d/a higher than the first can e

neglected, the expression for A becomes

A_ E _(a_ d)3 663 d_ _ _ _ _ _ i3-22)0 IE aE )- . I
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which differs from !he res-lt for a perfeeflly co ducting sphere of radit. a--d only

ir. the presence of thc multiplyitg factor(3,.- 3

Frcan &qns (3-19) and (3-22). the field which is scattered into free space is

ES E (a+ d) Q3o V  f 0-- t a ell

and the next step is to match this to the limit of a non-static solution at low

frequeucteb. Since

L .2 si o. co oI3
ell r

consideration of the vector wave functions MI and N shews that for Xt>I r,
0 o

(2)
C I, -- .

and hewz in zht near-static Limit

Es = IE * 3  _t0 3 Ct'- 1-3 _o -d\ ll(-3

- 0 I / ."(-3

The far ticld isi no~t obaine by inserting the fir- terms of the asymptotic expan-

simnn of the radial H.a-kc! fi nctions for ]argeklrl ad this gives.

E -,E k. k +d)1-3 2 ) (cos0cos 4,-si.
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Eqn (3-24) represents the k3 contribution to the far field arising from the

electric dipole, but it is not the -3r.ly contribution of this order. There is in addi-

tion a term produced by the magnetic dipole and this is most conveniently obtained

by considering a second static problem.

The' incident (magnctosta:ic) field is now

o

which can be w-itten as

l Z-H VC) (?-25)

and the task is to find :he scattered field bubi-crt , the boundary conditio;us

A
^It= A^

n-_l n-H

at r = a4d, and
t. .

at rra. The fc -- i " eqn(3-25) leads us :o adopt the following expressions for the

f i e l d :S .
if = AV,.-j.2

H'=5 I oil

where A, B. and C are constants as yet undetermined, and the boundary conditions
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her .give 
2

o (a-d 3  (a+d)

- 2B--

Sol-ing for e, heave

3 o + : -2 _kL (b 3 -a 3
- 0 *0

2 3 3 (3 3-2 0-
2b +a + (-a )

where b=a+d, r-d if d 4L a.

3 id

2 (x~d~li- (3-27)2 go "

This differs from t e result for a pcrfectly co nductirg sphere of radius a yly

in i i t presenc, "',c thtiying factor [1-3 u d)

S'np field which is scattered intc free space is now

:!s=_ H 0a i3 l- 3 /j - d 1 (2)
2 onl

ai ty -r tehitng to 'he vector wavc fu.-.ions for A )' r. we have in the z tr-

if o3 (131--

iO G

I -,,



THE UNIVERSITY OF MICHIGAN
3648-1-T

The corresponding electric vector is, b- u-sing , ,axwell s equations

E =  E° k (a+d) (1-3 o -M (3-29)
- 2 Poa

and in the far field this becomes

s eikr k3 (d)3 AIVE 0 3(d3 1-3 / - (Cos€ 0 -.. 0 cos€ 0) (3-30)

o kr 2 P. a

The complete first term in the Rayleigh expansion for the scattered

electric field is obtained by adding the ,'oniributions represented by eqns (3-

and (-30). nie required solution is therefore

ikr :I/E d3E E " -3 P-
{kr L 2 a a) Coj cos

E a- - 2 7 o 1sn0( - 1L

from which the scz'ttering function c , be determined if so desired.

3L4 Converxgec

previously remarked, the Rayleigh serie- iq i convergent representation

for sufficiently small values of kI. and in : y application of the above results the

actual ra Jius of convergence is then a matter of some importance.

To see how the convergence arises, let us write tho scatte'-!d e!,cctric

field in the form

E Eo  (ki) f (r, O,0 ) , (3-32)
_-n

i . .. ... ~~70 - -- "...
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where f ( 0, ,0) is a vector function of the coordinates. The series c. tht; right
-n

hand side is absolutely conve!rgent for all values of kI, thc function. f (r, 6, 0)

being bCnded as functions of n. Each a (k ) can be expanded in a scries of posi-

tiv. powers of k' in a neighborhcod of the origin of "ie complex k1 plane, and is

therefore an analyLic funcdon of h/ withi this region. Iy rearianging the terms

in eqn (3-32) we then have a representation for Es ab an expansion .. powers of

k,9, which expansion cenverges within the least circle of convergence of the

individual a n

If the functions an are now identified wt;- I1 coefficients Aoln and B 0.1"

in the vector wave function expansion for a perfectly conaucting sphere, it is a

simple task to determine the appropriate radius of convergence. From eqn (2-25)

it is apparent that the only singu.aritiks of the Aomn and Beln are poles a'. the

zeros of the spheickl I:ankel function or its derivaiixe, and the location of taese

zeros is .lich thai the sitgularity nearest tn the origin is providea by one of the

smaller .&es tn. For n I we have
ip

[h,(pj = -i -l (I+ i

P P~ P P?I)

showing that Aol :,as a pole at p = -i and B has poles at p= - 2(1* jr3-
n ly bel 2i

Acurdigl,,,bot A and B are infinite on the urit circle and since all
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the higher coefficients are regular inside, the entire Rayleigh series must con-

verge for jp1<1. The fact that a singularity exists for which IPI = 1 implies

that ti-, series does not converge outside this region, and consequently the Rayleigh

series for the perfectly conducting sphere converges only for

ka < 1. (3-33)

From the above discussion it is obvious that the convergence is determined

solely by the coefficients Aoln and Bein, and any change in these by, fv- example,

a modification 0f the o-undary condition may affect the overall convergence of the

Rny!-igh series. To illustrate this point, !c us consider the case in which the

boundary condition

_E- (-h E) S= 17 Z ̂ nH (3-34)

is imposed at the surface of the sphere. Here n is a unit vector normal drawn

outwards ft oa the sphere, r is the reciprocal of the complex refractive index of

the !. awrial of the sphere relative to free space, and Z is the intrinsic impedance

of free space.

Eqn (3-.,) is the usual impedance boundary condition and is only accuc;%Ce

to the first order in 17. The physical situation therefore requires tkat r be asoumed

small (r?=0 fer infinite condu6-ivity), though there are circumstances unde.- which a

physical significance can be attached to , qn (3-34) even when rl 'c not emmaIl c%.. -

pared with unity. On the othez hand, ,f the problem is merely regarded as -t
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mathematical one, it is a tri iial matter to show that the boundary condition is

precisvly satisfied by a scatt:tred field of the fo,'m (eqn (2-2 6) ) with coelficients

Ao!, = fZn (p. iy), BeJ i Q n (p" i/17) (3-35)

where
n(P)+ iyl [J, Pr

____~~ t p+Wrj (P))
z(p, ,)= ( -i)n n C (3-36)
n hn(P)+iil[Ph(P)-

For a fixed value of ?, n (O. iV) is a function of p an.- can be expanded

in a convergent power series within some neighborhood of the origh, pcO. Th.e

circle of convergence depends on n and as in the c:- "e of a perfectly conducting

spherc the least circle is pretided by A and Be1i, that is, by The
* ~~Oil byell ~9)

denominator in the expression for f2(p, 0) is

-(l-i ) " p2+ 1 p+ 

I which vansi-cs when

P=Pl=-" ( + : - /

These are two genuine ,/wos excvpt when / =0, in which case the second zero ;must

he i.scounted. if this case is, for the mcment, excluded, if follows that the

Rayleigh expansion for Es converges only for
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ka~min(UP11. I P21)

When Y is a gen!ral complex constant an explicit form for I P, I or P2 is

ditficult to wri:e dnwn. 11! -J [>)1 or j -Y IK(1, however, uie equations for p, and

p_: simplify considerably, leading to a more compact statemcr, 1f the convergence

region. Thus. for[Y I>> 1.

and for[Y IVI,

p,-i-i (1+4)

Accordingly. for 9M.all 7 thU L. V gC..L. region is specified by the zero p 2 for

the coefficien t Ao t. replaced by q ) and is

ka< I ril<<l;

similarly, for Ia. ge -7 the convergence is determined by the zero p2 for the

coefficient B (1 replaced by 1/yq) and is

kaY --I"<< 1.

I- bnth cases the region of conv,:rgence is appreciably r,!duced in comparison with

that for a perfectly conducting sphere, and can become infinitesimally small. We
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observe, however, that for r = 0 the zero which is dictating the convergeL,:

disappears. Th ! zero p 1 then becomes important and leads to the result given

in eqn(3-33).

If q1 is neiLhr la- ge nor small conpared with unity, the boundary condition

is of doubtful validity, but it is still of interest to examine the convergence of the

Rayleigh expansion when r=0(). Both P, and p 2-0co as-S-i and, indeed, for

I = q , P and P2 are infinite. This can be confirmed by looking at the expres-

sion for fj(p, i). In this partcular circumstance, however, f22 (p, i) imposes a

finite radius of convergence which now becomes :r.portant one, and from an

examination of S'2(P, i) we find that the Rayleigh expansion converges only for ka4Z.

On the other hand, note that j7=1 corresponds to a sphere whose impedance is that

of free space, and this is certaily a body for which the impdance bouadary con-

dition may he expected to fail. Nevertheless, the result does suggest that if '.he

exact bour.!atiy conditions were used, the radius of convergence may be greater

than unity in the case of a very diffuse sphere, an"1 - -,ti:h of the coefficients

Aoln and B in Stratton n4,, p. 365 gives additional confirmation of this.

Returning now to the previous example in which r7 is large or smll, the

fact that a marked reduct.on in the radius of convergence t -the Rayleigh expansion

zccenpanies the introduction of even a slight impedance into the sphere is.

physically, rather surprising, and suggests that the usefulness of the Rayleigh

_ _ _ _ _ _ 75
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approximation is limited to perfectly conducting, or highly tr,.nsparent, bodies.

The discontinuous chang,_ in convergence between the cases t--C and 17 * 0 is

dut to the fact that there is no expansion for Aol, or Belr which is uniform in

q. Essentially each coefficient involves a factor of the for p/p-rl, and for

;7 * 0 this can only be expanded in a series of pesitive Powers of p when

I p 1I q I Accordingly, any attempt to approximate the expresslonz for the

coefficients by neglecting terms of O(r ) will be limited by this same condition,

even though the final result may somewhat disguise the fact.

7
1t

___________________________________________________________________________
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IV

THE WATSON TRANSFORM AND CREEPING WAVES

The problem of the diffraction of electromagnetic energy by a perfectly

reflecting sphere for which ka is sizeable was made tractable by Watson ]918,

1919]. Watson found a transformation of the Mie series - the Watson transform -

which resulted in a much mo.- rapidly convergent representation of the solution.

Much iater Fock [1945,19461 and Franz 335 initiated a further analysis and gen-

eralization which inrK.cated that the functional form of the Watson solution was

applicable to problems involving other convex enapes. The mathematical evl"ter-

part of the extensions of Fock and Franz is found in the work of Langer 11932 and his

followers which vtas essentially completed for this application in the 1930's. The

more general approach has led to the presentation of the results in terms of certain

"universal functions" which havc been extensively computed and tabulated under the

dircctiern d N. A. Logan P954.]. In aur development w,, follow the approach of Logan

vnd his co-workers j39Gl].-

4. 1 The Field on the Surface

We now compute the magnetic dields induced na ili: bauei of a perfecly

conducting sphere hy plate electromagnetic waves, if ihe incident electric field Is

jwvcn by
I ,-IkzE Z xeE 

E(4-1)

A -ikz
Fi= - H 0 ye

II_________________________________e __________lil_______I___I___________
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the magnetic field on the surface is -1

Hosin ap (coS 6)H -- 2 _" (2n1)e x/2

ka :t ~ an'zl ( 1)(ka) 439

-1 (cos e)

+ =(l)(ka ) sin en

(4-2)

BcIos - 1 ap- 1 (cos0)

=I n

- 1 (c o s 1 9)

C(1) (ka) sin 0
n

where w:. have made use of the results of Section 11, the relatism

p (cosO) = - 1 P (cosO) (4-3)
n(n + 1) n

and the notation C (1,2x) =x h11 2(x) nlx) =x i (x. For convenience we also
n n n

.. _q'.,e the sd__situon
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.hich results in

P (Cos 0) P+l n-l(cos 0)n___ (__ )

sin 0 sina

(4-4)

aP %Cos 0) ap-(o a)n (_)n n

Using equation (a-4), equation (4-2) becomes

Hsi ( aP- (cos a)S Z ,n -in Jr/2 1

H o 0 Ica (2n+l) () (ka)

P-1 1ba
Psin a

ni (4-5)

OD -i, 7/2 i 1 -1 (Cos a)
-n

. -i(2n+l) e -_-)n -- -,

fl~ 1 L 'n {a)

P-1(cos a)I
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We now rewrite the sums over the integers in cc.. (4-5) as sums over the
1

odd half-integers, letting n = W - 2

H sin --i(V-/2) /2 v- 1/2
H 0 " . 21#e(

V =3/2 ..

1 (Cos (Cos )

[ . 2 (ka) _)v) (ka) sin&

(4-6)

H cos ~ 7 (zJV 2)~ 7j, VH=li 23'e (-)

7--3i2

11

r PW, l/(Cos a) P- (Cos a)11 _ _ 2  + _ V_ -

a T 2(a) sina aV/2 (-72

For later use we note that since

P x)- 0
0

the te,.r.s for v = '/2 could have been included in the.e sums.

The summands in eqn. (4-6) are regular functions of V in a strip slo.g L:.-

real axis so that we can write the sum as a contour Integral about the poe tive real
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(0.-- c, r has -sirapit poias at the od~alf-integers. Spec iiay the ejs. (4-6)

become

1! s~0 Si VdV ,,!1)I/

C
(4-8)

we have written the texins In square hraeikets in eqn-1,4-6) uz 09 an"'L

* We examine the ter-n-- e e(v) and act that these ar-, even functonsIof V. Rennus V.- rzna.rvder or .te In.i~ne s odd the ntegrand is an 01W Mctio-

of V,. W: -malder the con"-r C in Figure 4-1 and nn~e thu Lim loweer path glvv j
i-.-plane

FIGURE 4-1: THECiNTOUR C
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an integral of the forrn

co-iE
I e =f dy 0(v) (4-9)

0-1c

where uo wr!.c 0(v) for the odd functions of v . If w. refect the contour in toe

origin we find
-004-tC

1 d2' O() (4-10)

0+ic

However, interchanging the limits

0+if
1e = - di) O(V) (4-u)

-W+i1E

and ada_ ig t:e contributia the uvper path the tot:l integral is

i dV OV" (4-12)

--m+ic

!n the sequel we will suppress the ic In the limit -with the understanding that tie oath

is to run just above the real axis.

To evaluate the iptegrals of the form of eyn. (4-121 we need -o examinc the

•-tegrand in some detail. The first thW wre ame 1.' thAtr,,ia a .uid simple

poles at the zeros of ,a Vn H

_ __ _ _ __ I
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This analytic behavior saggests that it the contour (-cD, e) can be closed by a semi-

circle bi the upper half-plane .e can evaluate tie inte-.l in terms of, tneae poles.

This is indeed the cs.e under -eraia cin.s=-ences as we will show below. In the

contiary case Av vil evaluatt the integral by the metiiod of stationary phase.

As a preliminar- :'o our exa-inatop of tae integrand we defire, after Logan

f,96 iI. the fiuctiop (V 9))b
L In 3

2P (cos q) B E W 9) + ( . (4-13)

where these functions hbave the asymptotic behavior

E(1 2) (4 -14)

E3 v( ,E sin O In

.for IVI- andO < G<r. ExplicItly

22 "VU 4 -1n[
In (rO) ,( . :'sin&e

I) F + M. _ -

83slnO
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(2) .__'-+_/2 2 .- l¢2o--m5'2)
E ( F) (v+1) 7r sin 0

(4-15)

ie e cont.

2 2 2 2 sine

We have remarked that the contour runs above the real axis so that

Im V >0;

hencc, we can make the convergent expansion

see vv, = 2e' , ~ Ca I z  ii.1 ....

ee ziT 2~' (4 e (410

,, u.VA 'uc form of E(I' 2 )in eqn. (4-15) we make the following observations:
m

.(2)- -il +ti( '1/2 + ro7" E()(.k
E, (2J, a)=e e E .'r-a,(4-17)

i -.J vr ( (1)

e E(1 (.!J, a) =E m(, a +Jr). (4-18)
m m

1where eqn. (4-18) is derived from the fact that the hypergeometric fur.-4ons are

prioic in wit the period 2r so that the continuation of the E(I) in tne t-variable

j 4,t9:: '"27r is determined by rtht exponentialalone, provided we take the radical

(ai )-/2 to be I sin v-12..Putting these results ogefLher

seeir P- 1 (co a) ~~~I E (2, 27r (1+1)- 0) -iE 1 (V,2,rt'40)1
!/ ,1/2(c

(4-19)

I, ,- 84 .I
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where we have retuirned to the variable 0 = 7r-a

The operations 4/ 0 or 1/sin 0 on P do not essentially affect the
-1 V)112

behavior of P as a function of -J for I)I>> 1, Jm V > 0. Hence we have from the

asymptotic form of the E W, 0) that the dominant term of equ. (4-19) is of the form

e iV6so that the dominant term of the integrand will be ei l' 6- 7/2) Therefo'e, for

ImW > 0 the integrand will be a decreasing exponential in V provided 0 T/2.

1 For this case the contour can be closed, the semicircle contribution vanishes, and
o (1) an (1)'

the integral is given by the residues of the zeros of C() and C provided the

rest of the Integrand remins bounded. This is ineed the case except on the locus
(1)12 n t( l )?

of the zeros of CI(ka) and . (ka). It can be sliuwn, however, that a path can
I)-2 dl 2  (1) 1l)1

be found between any two zeros on which the functions 1/ (  and 1/C '  remain

I bounded.

Tho Lei Ab t i,u Ujau iLt uuminant one in eqn. (4-19) satisfy the convergence

condition on the s:micircie for all values of 0. It is this behavior under the decom-

position -.'. (4-19)1 that was the basis for the "creeping wavb 'analysis of Franz

We consider the behavior of an integral of the form

IE= A W/2E (4-20)

f(V)

~ 83 -
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where we write f for either C (!) or C Now from the remarks above we
Vl/2  -11/2

have for ;';- r/2 th..t -iv °r/2

con (4-21))

n

where f(T2n = 0. Since the first zeros of f, in either case, occur for 301,,. ke for

ka large we can use the asymptotic forms

C (ka) = I m1/2 6"1 m-2t - ,
2wl(t) 6 (6) 0...

CI (ka) = m 1 /2 (t) 1 -1/2 [(t3+ 9 )w(t)-4twl (t)) +.. (4-22)
'422 (t) 60 1

where we write

m = (kal2)"1

(4-23)t (- _(,-ka)
m

and wI(t) is the Airy function

wl(t) = J" (Bi (x) + I Ai (x)) (4-24)

Now we make a further approximation in the integrand of eqn. (4-20), We

give all slowly varying functionn of 1) their values at W/ = ka and remove them from

the integral. This we do since for x w/2, and ka and hence I Jlarge enough

n8
____ ___ ___ ___ ___ ___ ___ ___ 86
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the residue series [eqn. (4-21) ] converges with sufficient rapidity. Again uaing the

asymptotic form for E(I(]/,;P) under the condition JV) sin i p 1, we have in this

approximation two integrals which we write as

OD i~t
ifWl(t) dt

-, (4-25)

O9W e dt

57 J-CID w(t)

wheve we put

=m( €-)

We now approximate the fields on the surface for 0 > ir/2, ka sin >> 1

He -J sin0 ine ( i'ka~f(92 ) -i eka

OD (4-26)

L=0
where

2 (-,m(20 . + 3- - ) -
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and, as above, 1/3

m 7.(ka/2)

The next region on the surface we co.asidur is 6 < .r/2. Here we need to

further decompose the region since the'transition from 0 -- t, to the shadow boundary

6 - 7/2 , is accomplished by means of two different represent.t!ons. First near

0 = 0 we evaluate the fields given by the integral representations of the form of eqn.

(4-20) by a saddle point method for the first tcrm in the expansion [eqn. (4-19

The result for this leading term is

Si coo1 sin 2o0  5 sin 28-  sin 4 011 0 -- -Ho02 cos 0 sin 0 e"- a~ + +2ka co "~ 2(ka)2cos6 0 +"'

(4-27)

2 .in 2 0  9 sin20-sin 40+
H"-H~cos~e ika co~ 09nB -2k)~.06 *H L"2k& jcki0 2(Ia)? ooo 6 o

Here wt -omi rk that the leading terms in oqn. (4-27) are just the geometric optico

fields.

To bride the gap between the shadow boundary and the optics fields in eqn.

(4-27) we note that asymptotically as F-.. -c the functions f(C) and g(f) in eqn.

(4-25) go to the correct "eading term of the optics ficld in eqn. (4-27). We can then

lisp eqn. (4-26) provided we make a substitution in the arguzment so that we g.t the

correct phase. This is simply to let

M9 -ill (8 -2 (4-2A)
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in the leading terms of eqn. (4-28) for 0 d-r/2 and 0> 0.. Here the choice ol

0 is somewhat arbitrary. To make the choice of 8° specific is not meaningful so

we specify the range I30, 600j so that the regions of eqns. (4-27) and (4-26)

overlap.

In either of the nases we also remark that the terms in eqn. (4-26) for

= 1, 2, .... will also appear just as before. However the terms near the caustic

in the lit region diverge as l/r ein9 as 0-.'O. We will find a bounded represe::i-

tation for these when we treat with the same behavior at the caustic in the shadow

region, 0 ir.

We will now find a representation for the fields in the region near the caustic
'n the shadow where ka(r-9) is small. After Logan L1961] we make the physical

argunent that the terms in eqns. (4-26) of the form g(q, )ei'/Fu- T dscribe

aves which diverge from 8 = r while terms of the form g( ' describe
9)e 1 nedsrb

waves whic;i converge toward 0 z 7r. This suggests that on the surface these waves

can be represiented by Hankel functions which repre'"f. -:n ;ncrging and diverging

waves in a cylindrical geometry. This behavior is also suggested by the represen-

tation of the functions E (1'2) (V, 0) in eqn. (4-14).
m

We consider the tern of eqns. (4-26)

-31
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This is a valid representation away from the caustic, fox' ka(i-0)7,1, R ,d is

suggestive of the asymptotic form of the Hankel functions. We will find such a

ilankel function representation and then continue eqn. (4-29) to tho caustic region.

From the asyrnpLotic behavior of the Hankel functions

HI(1'2)(z)"+ tz (4-30)

we have that

ika(2r +0 -'rl2) -3ri/4 ika(2ir+ 'r/2
ei e 1r2T24m8(4-31)

.in H _q

and ika(2ir, + T -0) e3ri/4 kair ika(2irl+ 'r)

T I (Sy [ka(T-0)3 (4-32)

$in 0

If now we aubsttute eqiis. (4-31) and (4-32) in (4-29) we get

e'17/4 Ireika(2,rl+ 7/2)

(4-33)

90 ----
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Now if we let 0 approach r we have

g(Y ) -= g(91) (4 -434)

and (4-33) becomes

e 'ir/ 4 4 c 1k( 4+ 2J1(ka ,-0])) (4-35)

which is finite.

In tho above treatment we have performed the continuation into the shadow

caustic using the g(g) as an example. Of course, the same will hold using f(C).

Using our new representations, eqn. (4-33), and the analogous one for the

f(9)'s eqns., (4-20) become
-3ri/4 fr-- i(2r /2) ti (2)? k

He= H sin 0 e _I e lk(2rl+ 1 (ka [7 r-0) j

+H l(ka C -0) (A91
1 (4-36)

3H1/4 3/21i ./'3. "(-ika(211+ 7/2 ) (2) (ka(Fr'0))g( )
H o Cos a e -- m Ge

where as above, +

i ( k a / 2 ) 1 / 3 ,

= m(2, + "- 0),

and 0 > 7r/2.

.. .. ~91 . ... .
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A similar rcprcsentation can be found for the higher order terms near the

caustic 0 = 0. We give the results without repeating the analysis.

(4-37)

cw -14m3/'2 G-(27+ 3r/2

H HO cos 0 e m 47 s71n76(

1-0

if (1)' g(kaQ) 1g + (2)'(kat9) g( )

where 0 !r/2 andkaslnO- I.

4.2 The Suattered Field

Again with the field

I A -ikz
ESE x e (4-38)

0

incident on a perfectly reflecting sphere of radius a, the scattered field to order 1/r

is from eqns. (2-16), (2-17) and (2-25)
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ikr @n( )b~nCOSdg) n~ka P Cos 0)

s 2n+l L '(ka) P'(cos 0) (ka) V 0)
E= Eo0  kr E() nn+l ( ) () bin 0

n=l Cn(a n (a

(4-39)

CD-
ar 0 k) Pni 0 ka (os o)S ___ _ "_ -

n 2n+l n(ka) n n
=-E I si--Y-siE Eo szn" n(n+1) C(i) ) 1.(I),

n -- [C n (k ).

We make. the substltution,: of section 4. 1

0--4& 2 W-0
1

n.--+V,=n + 1
2

and use the relationships of eqn. (4-4) of section 4. 1 and write

2) (ka)
i. /2 (- I/

0 k" 3 5 0_()' (,_;) (ks) sina

(4-40)

r 7" F,_ (,Cos a) -(" P ,/(cos a)

_ =* I
'y 1,/2 V'/ /

9.3



THE UNIVERSITY OF MICHIGAN

3648-1-T

We now restrict our detailed treatment to the first of eqns. (4-40) and con-

sider the sum

es = T , + - _ (4-41)v' (ka) j
2 V_~'1i() ~ *~/2 (ka) 4)CrCf12li a A

Eqn. (4-41)has the contour integral representation

4, -1(k)1 (o;a k) P-1 (o a

r _ _fV dV 21r/2 ) -P V - _ + - /_2_ )

1) ka i (a)
-/2 1/2 (4-42)

where the contour C ,ncircles the positive ril vxiz in a clockwise direction as in

figure 4-2. As before we note that the contribution
'plane

FIGURE 4-"

of the poles at 1)= 1/2 vanishca.

.( + r(2) cqn. (4-42) can be written as the sum of two terms.

The first we consider if.

= d) aPl.2(cos ' P-(cos a)1 n  cos a) P PCos
Ilf2i~r+ n-l ~ (+!) +~o

+e r 3asin a z1ausn a
e L"

(4-43)

.. .. 94 ,
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But O
Z (n +1) P l1 (co()= - cot (4-44)

2 n 2 2
n=o

hence, c

d 1. co a) . 1 =0 (4-45)I dt 2 2ct )+ sin a

From this result[eqn. (4-45)] ,re confine our attention to

lt(2)'(,a) (cos ) (cos a)f vdWV (ka) v- , (coa) V2 (ka) PV* 1
1+e21  (ka) a a + (1) sin a

c L / $I_1/2
(4-46)

Since the integrand in eqn. (4-46) is an odd -nctlon of Vwe can reflect the

lower part of c in the origin and get

S(2) (cos a) ( ) -1 (Cosa)

3~2 V7i (ilt (1) (k)sin a

1 2 V1 12  J
(4-47)

Iwhere c > 0 is a small parameter. In the sequel we drup the c in the limits of inte-

gration with the understanding that the contour Is to run Just above the real axis.

As in the previous discussion of the fields on the surface of the sphere we

would like to close the contour in eqn. (4-47) by a large semi-circle in the upper hall

l',uie, To this end we deoompose the Logendre funotion an in eqn, (4 -1u),

-P 1  (1)(2-2P "  (coosa)=-E (-v a) + k()

1' - 1/2 1 Wa) (4-48)
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and require a>0. Since E(2 ) ... e is the dominant term in Lhe

legendre functinn in the upper-half -V-plane,

1- 1 1+ ( 'i r  (4-49)
+ e21 "'nr -21 Vr

and since in parts of this half plane

(2)
2(ka) -0(l) (4-50)

r! (1) ( a
(ka)

we have that the terms of the integrand of eqn. (4-47) are exponentially small for

1 except for

E ;(2)'ka1 _ _2) E (,)
- ",(1 (ka) E (,a

(ka) (1) sinaL -/2 -1
(4-51)

The remainder is

rD (2) (2(1
C'(2), ( a ,  V, a) I 1a)a)

I- VdV' /2 1

J 2 L) l+e2V"rl  -8 -2V I2, t,(_1)2/ (k ) ? a 1-e

(2', (4-52)
_ j/(ka) E(1) (V, a) 1 ( , a)

/2 1( - I --- - - II
+ (1) (kL) si 1 + e2v xl  sin a l+e-2 1V r ji
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Eqn. (4-52) can be determined by closing the contour and evaluating by means

of the residues at the zero of C ()(1) and C(1) (ka) . If we designate the zeros of

(1) (k)b L /2 V1/
"-*-1/22 by n2

(1 ))(ka) 
= 0

•~~ "1 /2
(1(1)

and those of () (ka) by V

l) -/2 
()

_M /2

then

S(2) " E (F ) 0,)C -J12(k) 1 z,cY

' n ! L
n ~(ka)]

(2) 1 (2 )
(V V 1/ ~( )-- - +  7rjm[ I

sin a 1 + e M

(1 ) %) ( 2 ) _ _ _ _ 1
,+e 2 7Jrnr I ?a i+e j

L

(4-53)
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Since and its derivative vanish at the poles we can replace r(2) in eqn. (4-52)_' V (1 1 ,;- 1/2

by k., Also, since the zeros of r and r start at [l2 -, ka for ka s.ffic-
1'~2  :VN

iently large we can use the representations

=m1/2 {v(t) - m-2 [t2v'(t) + 4t v(t)j

(4-54)

1/212 wl(t)  m-2 2 I

where
t- (W-ka), m (kuia/' 3

rn

and v(tl and wl(t) are the Airy lunctions

v(t) = I T A i(L),

(4-55)

Since Im i-V;0 there are the convergent expansions

Jo

I~e 2riV J0 OD(4-56)

1 2xi%) ( 2 r V

-21ril ) Z2
l+e Zt=0
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From equations (4-17 and (4-18)
OD

1E (1) a+l 20

1+e
27v

I

I

i--0

(4-57)

( ' = i H I E f ) ( . , 2 , C + 13 --a )

1+e A=o

and

3jr1() a 4

So on substituting eqns. (4-54), (4-57), and (4-58) in eqn. (4-52)

IC ( 7 - i/4 '-- [qj )e l'+ iq( j )e' ] (4-59)
+ (4-59)

where we write, noting that this is 2 different notation than the previous for 9,

( -271 + r - 0) m -- mt1

9 (271 + r + 0) m = m (4-60)/L 0 e _tVI dt

-0D Wvt(t)

/ m v'lt)

Here we use the caret notation not to designate a unit vector but to be consistent

with the notation of Logan 11959] .
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We return to eqn. (4-51) and make a saddle point evaluation. The st.tonary

point occurs at

J/= ka cos c/2 or V= ka sin 0/2 (4.61)

So by the standard ,,ethods

= . ka e 2 1k cos 0/2 (4-62)

Finally we have the expression for the fields

ikr e -Ica cos /2 ()2 3ri/4

60 0 -s- la - a 6/ _

E8=Eics J~ 1/2o

0

1=0

(4-63)

I. k, _ 2ika, C (ha)2 3ri/4
0 kr M2

ere E: Is evaluated analogously to Es and tie function ) is given by

A / it v(t)
P(W) 1!f/- e &(t) CL

-10
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Near the forward direction, a-',, , it is necessary to modify our treatmert

because of the singular behavior of the ftuctions E (2)(J, ). We will start withI

the integral representation of eqn. (4-42) but retain the Legendre funetioca,

2A-1, (ka) a co ) P (k,/ Cs l
2iv v (1) (1) sina

where c is a clockwise contour about the positive real axis. On reflection of tie

odd part of the lower contour this becomes

ka ~(2)1 -1 ,(2) -1
K (a) p (osU) (Ra) P (cos a)

Yd 1  /2 /1/2  # -2 -1 l/2  )

- 1) (ka) -a Ct(a) sin a J

) j (ha; - a) ,, (ka) P (Cos a)

-_ _ +l- 14 2 ('4)

+f l/dlI V-J/2  + -ia

J sin a

0

ie -HC(2)' (ha) 3P (2o ) a) P1 Cos
V-, 11 l2 V_ 1/2 (ci c J/2  _/2

00+e _egv (ka) aa k()1 (a) sin a
-o-I i*-[1/2 WY

(continued
' ' 101
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0 r 1 (COS ( a) p (Cosal
udy *V-fr tyf

f +e 2r12 +a Sina J
OD-IC

vdv P s (cs)
__ __ _ . 4(cos _ -

s
1+e 2 r'V a gin a

- (4-05)

The first two terms in eqn. (4-65) are evaluated using the Bessel funion

representation of the Legendre function

P-1 (cosa) j J;va) (4-66)
V -1/2 I

for 11 1 large and a small. The result is for the first two terms

ks, r(2) -(o ~d1 W( W/ (ka) p-l (0os a)
/ h- 1/ 2 )2 ' d- - - ld?'

(lj sin a (1) sin a

ao(akC)

=-2ff- - m {Ika p()+ m" (0)+... (4-67)

where we write 0
w()_It) d + vt

I I / eit+----- dt (4-08)
21 41 w(t) f w(t)

-w00

ap(g)
at

-' ~102 ...
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and p(1) (= p(g). Similarly,
ka C(2)' (ka) ) p-l, (Cos a) OD lp (ka) ap -1(Cos )

2f 1/2 L +20a )  cat 1M +/k la/ C

2 IJ(kaa)m ika q() + m q(l)(o)+...] (4-69)

utere the q's are the functions
0 O

I '(t)igt VIMt
S1 et OD 1 ~wt(t)

(4-70)

The third t rm ot qn. (4-65) is evaluated by using the small angle exlnio.

2 1 ,2 9 4&

21 a( (Cos --) -(v , )s,"2 + +.... (4-71)v Y2'2 2

We find

1(=((a)6  2 (+4- )1
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The fourth term it evlhmted uising the Bessel fanction representation of the

Legendre function and expanding the denominator (+e2*'). Again we remark that

integrals of this form can be evaluated by residues and hence we can replace (2)

2/a1/2
hy 2t so as to keep the form standard. Performing these, operations nd keeping

W-1/2
the higher order tcrrns

0 (2) 1) a 1 -(C(2) (ka) P1 (cos a)

d'Y V-/2- 12:1

.O

1=0

where, as before

l = t)  dt
J~ / w1(t)

(.1-73)

W I(t)
-0)

Tae last two terms of eqn. (4-65) are equ and can be evaluated usug the

expansion in eqn. (4-71). We gui

104



THE UNIVERSITY OF MICHIGAN

3648 1 T

r ~ l o [pl (co-- a) P (o&
~~ / 'I1,dVI - L/

j~ 2i I~ej27VI sin a jrD1 -- 1

2 yd iY-%/ +p-yYi+e27y a + sin a

0

1 31 sin2 a 185.767 . (4-74
12 o7J 2 4,193. 282

The fields are given by

E+= .k [(aoa) k ..

+ 2 u'-- m [1kap(O)+mp ,...

+2 "Jl' (aft)m [ika q(O)+ m ql) (0)+ .

li 
2jr(I+l)ka

2 ka 4i- m (k.) q 2t<(.Z

0

+ J1km n 2[m2(f+l+i-. (4-75)
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E E i sin - ka -t(~ ~(0 -45(ka2  si0 0 - Sin8 2+ "

+2J(aka mLilkaq(O)+ mq 1 ) (3)+...]

+ 2 tZ Jl . m [ ,0, P m p" (0) +...]

Go

+,~~lk (l( k) )M)

+ o, q (1+1 (4-76)

4.3 The Formulas of Sectis '4.1and4.2.

For a plaiz: ele'tromagnetic wave

SE xe-tz (4-77)
0

incident on a perfectly coductim-g sphere of radius a we present the formulas of the

previous subsections along with a brief cornmet t on the physical nterp-etazioan and

the methods of calculaton.

I .3.1 The field on the surface

In the lit region including the caustic we have found the field t' e-onsist oftwo
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terms. The first is that due to direct illuminatton. This is characterized by the

fact that (11 it reedpus to geometric optics in the !imit ka-.-ro and (2) it carries

tphse of the ncideA field. Under !he somewhat arbitrary condition 0-S -60°

we have the direct field
co l i sin2 9 5 sin28 -sin46 t

Sn)2 4 ..
R0P-2Hca~in lc"aco + -; 5a - R

0 0 2ka cs6 2(ka) cor) .

2 2 -~ (4-78)

H?* 2 Hcooe0eflCoa J I sin 2 9 ainG-a_ nG

The second contribution in this region arises "om waves that have crept

2round the back of the qbere and hme, is ca rzed by having pthes

im(22i + forO -O. The form we give for this contrlbution depends on the

,,Pe of ka sin 0 although we ivoe th restri ion _06 i/2.

For 0 e/2 m z izn cV 6 i for ka sin a > i

!1 -H0 -iH __in _ mI f .ka 11  '

" . ..... -1- I-
H 0 coo0 PSG (

_______________ 107 _ _ _ _ _ _ _ _
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and for ka sin 8 - I
(D

jz1 isA- ka(2z1t+ 3/2)

0

-~(W) 1t+)+ 0'")l'B )I

(4-80)

Io

W3 /-i2/4 3/2 * ika(2tl+ 1 - = /2)
Ho =e H co 0m fr e-9tb (

(( ~j 2)?~~)

and for 8=0
CD

0 0 Hog P i0, "1+1

(D (4-81)

,,i - o /4 ,,) . +
He =2 Htco.e 9 g*0 .1=0+

In eqns. (4-80) and (4-81) the fincUon f(g) am g() appear. "teL Iave been

compuied and tadated by N.A. Loan [i9oI.

In the tranition region 30 0 E 490 there aire aain two coaetritons. i

first is the contimation of the shadow currents, the second is the creeping ave
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contribution. These are

H=-iP-H st ! e -i (m cos 0= )

+t J e~ lg(z+) eo .4

0 m f

e we have made the substitutioi

+1 49" i"

AZ I -, f

0 04-82

Ho ~~~~~~= - Cos [.0 a (mco8

rthe fir-st term s that this term has the pb 'e t the I,,ideot wve. "7be uju
10

e rws le ust te iroz

in the shaow regio avy fro the ca,,fit, 9- 3: , "-o sta 9
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H =-iH slno- [em~in Q' -L 1 .9

(4-83)

UD

1=0

These are purely creepitw- wave terms agair dwrracterized bv slheir phaw-4.

Finally near the shzaow cauzstc we have for ka sin 0 4c 1, 8 >v/2.

Sin ( s(d T 2 2 )~
- 1=0

(4-ft

11l=cOH ae ri4 n3/2e

1=0

it, j kaika0(fell+KI

H 2H sinle m3z!u4(4We
o1= (4-85
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4.3.2 The Far Field

In the far field there are essentily just two regions. Te fOrst is the large

region for which 0*Oei. The second is the forward scattered region for 'ehC*

-- audka sin &,-. 1.

For 6., r the dontijant coutrflmtion will arise from the terms

(E:> Econ -§( e cc. 2 k "3

22
"(J)

_~k~iE + ts ,

*kr\i 2kco2

terms correqwoak -,, the creeping wave gon are

ikr 2k am/~~d -~1

(4--es)

ap 2

(~)2 3r j2 + i~p

L_9 ___1__
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where m (ka/2)1/ 3

(2m 1 + 2r-e) m = mt

=(2d+ w+O) m =mP

and
A 1 eit v(t)

WE e -dt4F f wi(t)
-w]
OD

A 1 f VIMt
e w1(t) dt

-00

are functions which have been extensively tab uaied by Logan 11959]. The creeping

wave contributions are a very small correction except for cases in which there is a

phase correlation between the primed and unprimed terms in the brackets. This

occurs for 0 = mod7r or =) mod 2r. Infac .forO0, backscattering, this

correlation -,pproach can be used to predict the ralative maxima and minima in the

backscatLering cross section as a function of ka.

In the case of forward scattering there az,. . :.,ro distinct contributions. Th,

first can be recognized if we recall the cross section theorem which states that
47

'T= k-7 Im (T)

where u T is the total cross section and (0) is the complex field amplitude. Since in

'the limit of geometrical optics

T =4ra2

" 112
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we have in this limit that

Im for) = (ka) 2

Recalling the form of the forward scattered field we have the optics contribution

Ell sin cos2)q) (.J (4-88)

and(E)op is the same expression with cos replaced by sin0

(E iEsin (ka) (ka)4  (ka)2  .. (4-89)

The remaining terms in the forard scattered field are those that arise

directly from the shadow boundary
/ S ikr .fJ(aka)

E0 i Eos 0 -" (2 Fr m k [ik p(O)+ p(1(0) +...+

+ (q(O) + m 
(4-90)

ik I (a ka).
Ii E sin 0, ( fr- M) r m (O) +

+ Jt(a ka) [ik p(O) +mp '(0)]
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and those which creep around the sphere one or more times

I e ikr re OD( 2z(I+l)ka

(E~~)=lE cosoj (-2ka 4~1Z~~
0 0 kr Z

JJ J1 (ka a) )

S(ka a) 6(2rmd 1- ) + J1 (I (2a) ~ka a

(4-91)

i E sin -ka 72(+)k

1=0

"[J' (ka a) t(27rm(+1))+ " a" q(2am(j+1)]
kaa

in the above
0 i~ t 0

1w= e '' dt + eigt -vt) dt

0
q(9) et dt +e dt.

"-.W.. W14t

which have also been 4Lxtensively computed and tabulateci 1 y Logan figs!).
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V

THE PHYSICAL OPTICS APPROACH

Perhaps the best known technique for obtaining approximate solutions of

high frequency diffraction probleris is the method of physical optics. The key

feature is an assumption about the current distribution on the surface of the scat-

tering object, and in this section the method is applied to the case of a perfec.,y

conducting sphere cf radius a. The degree of approximation involved is examined

by comparison with the exact Mie series, and a numerical example is treated which

lends support to the use of physical optics, particular where the main purpose Is to

obtain general estimates of the scattering behav'i.o

I5. Physical Optics for the §phere.

The scattered magnetV. field is given in terms of the current J Induced in!

the surface of the sphere by the equation

I S R (RJ)dS

where ii is a unit vector from the receiver to a r2-'" !b3e -jinL (s, 0', 0,) on the

sphere, the distance between these points being denoted by R. If Jwere accurately

known, the abcve equation would provide an exact expression for the scattered field

and the basis of the physial optics approach is an approximuilon to the true value

ofa115
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According to ray theory there exists a sharply-defined shadow regi.- b~hind

the sphere in which the total field is zero, and since

AJnAH

where n is a unit vector normal, the current distribution over the shadow area must

be identically zero. For the illuminated portion of the sphere J is obtained on the

assumption that the field is reflected at every point as though an infinite plane wave

wcre inrI4&nt n 2- ifinite tangent plane: and this gives

J = 2n^ H1  (5-2)

that is, twice the tUngential component of the incident m.ognetic field. The current

distribution Is now completely specified by choosing the Incident lield 2 that given

in eqn. (2-1), and hence, at a point (a, 01, 0) on the illuminated side of the sphere,

A -ik cos 0w

j.-(m 01 X - cos 01)2H e (5-3)

Moreover. the fact that r is large compared with the rafus of the sphere means

that R I : tectively directed toward the origin ar.

R - r - a cos 8 cos 0' - a sin 0 sin 0' cos (0 - 0,)

from which it follow6 that

le

i______,,_________ 116 ________ -______ -_
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SH =0,r

r/2 2f
H ik HO a2 e i k r si 0 -iWa si ' cs01 d , o

He - H ax - si e sj 9 cosOd' d'
0 2wr r fj

0 0

7/2 's
s 1k 2 e k  (0ikJO

H1; .... sin f e - ik o sin26' cos 0' 1'0 do'

2,r o r si

0 0

r/2 21

1k 2 e~ " isnkcsId'
2z H0 a r C 0 Cos sinecos 8 d d.

0 0

where

=(cos 0 + 1) cos 8' + sin a sin 0' cos (0-0').

Of more dire,-t interest, however, are the components of the electric ve#,ur

in the smc.taered lield aw- '.j using the equation

Es = -!Z V AHs

we iave

E 26 Eo isin+1 2 cos cos (5-4)

ka2 ikr

E -r Eo-- sin (5-5)
02 o1 r 2
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r/2 2wwith f O( e_ 2

wih sin2 0 cos d' da'

0
and

x/2 2w
P

I2 = f e-1k sin 0' cos O do' dO'.

0 0

The component Es is of the order 1/r2 and therefore negligible by comparison.r

The above integrals caa only be evaluated exactly in certain special cases

and for arbltrary values of 9 and 0 it is necessary to rely upon approximate tech-

niques based upon the (assumed) large vale o*: .m. These techniques can be

illustrated by reference to I. Here the 0-1ntegral is

2wei asin 9 sinG' e s -1 c og ___ do

0 -

O-ika sin& sin0l os0

eJ sine sin, cos '(coz Ocos 0, - si0n sino') do'.

and since the term invelving sin 0' contributes nothing, the integration being over a

complete period, we are left with

cos 0 e i s 8 , cos 0'cos 0, d = -2ri cos 0 J,(ka siti 6 in 8')

- 116 ---
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and hence r/2

-2ri cos / e- lka (cos 0-1)cos 9, J1(ka sin 0 sin 6') sin2 ' dO'.

0

If It is now assumed that ka sin 8 sin 0' is large compared with unity* the Beseel

function can be repbed Dy its asymptotic expansion to give

e -2 co_ Cos e c)o s(ka sinO sinG'- )sinte'd9'

k sing 4

0
31

and byr vitlng cos (ka sin 0 sino' - -)in e.Vorut form it can be verified that4

the only saddle point for whicb 0 !-Otev and0-z 8' 2 isO' 0 02. This is equivalen

to substituting

I cXP I[ -kasinosin2 4

'f the cosine factor and gives

-,4 [ . ,.2 -2 ,-cos , coo

0k coe- ejj-

2 2
.,eiL/4 tanjcos e - 2'ka cos e e dt

tan-cos~e e d
2

4 The failure of this condition at the lower limit of integration clearly indtcates
t.ad even if the subsequent evaluatioa of h and 12 were performed exmctly the
results would at best be approximate.
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Providing 0 160, r (cases already excluded by the requirement that Im sin 6 sin 6

be large), the limits of Integration can be replaced by ± 0 and since

et 2 dt r 1/re ~ir ,/4

we finally obtain

Is B -21ka cos
1 atan-2cooe 7 .

An analogous treatment applied to the integral 12 leads to the result

is -2ia cos 
I2 - e

and if these expressions for h1 and 12 are inserted Into eqns. (5-4) and (5-5), the

scattered field takes rhe form

ikrs~ = r E e___ e-2ka cos (5-6)EO -2 o r

Ea a E i e2k 2

The corresponding scattering cross sections are

2 2
6 ra es (5-8)

and 2 2
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The above results have been obtained by an approximate evaluation of

and T2P the basis of which is the assumption that ka sin 0 is large compared with

unity. The smaller the value of sin 0, hth larger must ka be in order to fulfill

this requirement (s-.e footnote p. 119 ) and in the limiting c. es for which sin 0:0

the metho is not longer valid. Yt is fortunate that these cases ;!re the very ones

for which II and 12 can be treated cxctly.

8 = r corresponds to forward scatter and since P is then zero

I,10
A

and 12=

giving 2

E0 2 E0 r

and Ik2 ekr

E;=---2 or

The polariza"tion a :- .ore Iduntical to that of the incident field and the scattering

crosE :,actions are

k24 2

and
24 2aoj=v k a sin~j

implying 4jA2

_ _ __,, 121
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2
where A = 7ra is the geometric cross sectional area of the sphere.

The other limiting case is e 0 and correz ponds to back scatter. Since

2 cos e',

1 =0

and /2 1

12 = 2 f, e &' in 0' cos 8'd0' - - e (e2ika+-- -i
f ika 2ika

0
S -21ka

--- e
tka

If ka is large. Hence

ikr
E B -a e Cose-2ika

9 2 o r

£kr-

S= aE ___sn -21ka
0 2o r

and these ire in complete agreement with equatJoas (5-6) and (5-7) notwithstanding

the fact that the approximate method of evaluatins ana 12 breaks down when 6=0.

In view of this continuity as 8 approaches n !t is rcasonable tc put iorward the

scattering cross sections given by equations (5-8) and (5-9) as valid for all 0 not

near Lo ir and the implications of such a xtatemcnL will now be considered.

.2 A C-oparlson ol Foruiuiae

According to physical optics the scattered electric field at any point consists

, _ _ _ _ _ _ _ _ _ 122 .......
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of two in-phase rectangular components in the aperture plane of a receiver directed

towards the center of the sphere. This is certainly in partial agrcement with the

conclusions of the exact analysis.

As regards the nature of the scattered field and its dependencc on 0, the

predictions of the physical optics method are correct, as may be seen from a

comparison of equations (b-6) and (5-7) with (2-37). But the approximate treat-

ment has produced components which are in phase for all 0 and moreover, has

destroyed most of the dependence on 8. Indeed If we exclude for the moment the

case of 6 near to 7r use of the physical optics mrn&.c is equivalent to replacing
CD I (CsS ) (o ())n+l n( (5-10)

n=I

aind
00 nrIP (Cos 8) p (Cos 6)

2() = (-i) n+ l  A + IB n
/.f 8 n sin6 (5-11)

ka - ka cos 2 respectively, where A -nd a ,re defined in eqn. (2-25).by r - ereseciveywhee n n

In part!cular, for backscatter it replaces
OD n(n I )(A + i B) by --- e

n=1

and for the c: ceptional case of forward scatter

2 "20 n- k 2

n=1

_ , ~123... .
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rhe degree of approximat!on which these imply has been examined for a .olected

value of ka and the results are given in section 5. 3.

Such a comparison is not, however, a fair test of the physical optics method

in tha; additional pp,.oxvxmations were made in order to evaluate the integrals I1 and

12 The basic assumptions as to the form of the currents can only be tested b a

study of the currents themselves and this will now be done.

At any point (a, 9, 0 ) on the surface of the sphere the physical optics

approximations to the current can be obtained from eqn. (5-3) as

J = 0 (5-12)
r

-Ika cosJo = 2 H° cos 0 e (5-13)

and J = -2 H sin 0 coo 8 -ika cos 0

.f, 0 -e i!5r/ 2 (illuminated portion of sphere), with J J0 =J = 0 otherwise.

In contrast the ex.ct current distribiflon is

A I a 3-5J-A ̂(H +H )(-15)

where H i and 1Hs are given by eqns. (2-18, (2-22) aud (2-25). When substituted into

eqn. (5-15) these expressions, together with the Wronskian relations

[ka i (ka)3 f/ka
J(ka) - h (ka) naho ka)]' h .ka >j
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ane

j n(ka)
[ka h (ka)

n
1

lead to the formulae ap (cos 9)

J Cos n (-i)n n+l P Cos ) '3

n-i "l"~ ' ka h (ka) sin 0 h(k)1 J
(5-16)

and ap 1 (cos 0)
H o  z D P (cos n) -i

J H sin 0 _-)n+l 2n+1 - Ia

.ka n(n+1) [ka h(k j' sin 0 ka hn(ka)

(5-17)

A comparison of equations (5-13) and (5-14) with (5 -16) and (5-17) now shows

that the physical optics approximation to the current replaces 1

1n 2n+1 (CaPn(cos )T,-=- . / .( 1)n  + I r ,-
ka n ka hn(ka) sin 0 Lka hn(ka)]

(5-18)

and

1i
7--7 P!I(Cos 0)n

1 )n+ 2n+l na
2 k n(nl) hn(ka)1 I sin 8 ka hn(ka)
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by
2e-ika cos 6 and -2 cos 0 e-ika cos 0

respectively for 0 0 4r /2 and by zero for other vales of 0.

It must be emuhasized, however, that the usefulrLness o 'lie physical optics

approach in scattering problems does no', depend entirely upon t6e accuracy of the

current distribution which it predicts. The parameters of most practical impor-

tance are the far field amplitudes and the fact that these can be expressed as

stationary forms involving the currents (as In the variational forrlation) suggests

that slight errors in these currents do not necessarily reveal themselves as errorA

in the far field amplitudes. Ideally it would be desi',ble to carry out a direct com-

parison ol eqns. (5-4) and (5-7) with (2-37) wth no approximations roade toll and

I. , but the labor involved in a namerical integration of these integrals prohibits

such an undertaking. The cu- ont distribution Is the only altern.tive basis ofII
comparison not invd1v. ne approximations additional to those of the physical optics

method itself.

5.3 A Particular Case

A significant test of the predictions of physical optics can be acheved by

confining attention to a single, judiciously-ehosen value of ka. The case wh-re

ka = 10 is convenient for computational purposes aid, in addition, leads to a b i% -

L zering cross section whose exact value (see, for example, Hey, Stewart, Pinsor.

and Prince, E195] ) differs from dhat of physic- optics by (about) the local mean of

. .... ... 126 . .. .. ..
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these deviations as a function of ka. To this extent it is representative. Moreover,

it corresponds to a sphere of sufficient size for the remults to be of practical usc,

but small enough (a = 1. W) to give a stringent test of the physical optics method.

The basic assumption of physical optics is an approximation to the current

distribution which would seem to be justified if all dimensions ot the body (including

the radii of curvature) are large compared wiLh a wavelength. Nevertheless, the

method is known to give good results for a wide variety of bodies not excluding

those having point singularities or sharply curved surfaces, and indeed, a sphere of

radius Wi falls into the latter category.

A comparison of the postulated currents wit. their exact counterparts for

such a sphere (see figures 5-1 and 5-2) reveals a remarkable amount of agreement

I over the entire Illuminated surface, the only real discrepancy being ne.ar to the

shadow edge in that nurrent which is assumed to be discontinuous there. Over the

shadow area the ct-rent, are not zero, contrary to assumption, but the amplitudes

are app.re ' ibly less than for the other hemisphere, Particularly in the case of the

'continuous' current J . At 0 = 2 the currents are identical, with their amplitudes

showing a marked increase as this point is approached.

The failure of the physical optics approximation to the current in the snadow

is not surprising since the currents here have to 'fit in' with the unnatural form

f.rced upon them in the other region. Moreover, the discrepancies are unlikely to

.... _ _ _ _ _ _ 127 = ._
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have much effect on near-backscattering In view of the shielding action c.f the

illuminated hemisphere.

The fact that the overall agreement between the current distributions is

gi-eater than had been supposed does suggest that the discrepancies which have

been found in physical optics values of scattering cross sectio=z are not neur-ssarily

attributable to errors in the currents themselves. It may well be that for bodies

having no surface singularities, and with a receiver in the illuminated half-cpam,

the major inaccuracies in the celculated scattering behavior are produced in the

(approximate) evaluation of the physical optics lnt,,'rals. In the p.esent case,

however, this approximate evaluation yields resuias which are quite acceptable

for many purposes. The qualitative agreement between the component echoing

areas "s good (see figure 5-3) and indeed, the approximate values are in error by

no more than 10 per cent for a sphere oi radius v providing the receiver lies in

the half-space -onta*nL-- the incident field. Even if the bistatic angle exceeds 900

the erT--' in using the optics formulae remain small, and for a = M/w a permitted

error of 16 per cent would extend their validity to cases of scattering through angles

zs large as 120 0

In view of this agreement there seems every reason for pitting forward the

physical optics scattering cross section for use in practical calculations involvit.g

spheres of radius greater than W/2. Providing the receiver is directed at the
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ii uminated portion of the sphere, the component scattering cross sectioz., for a

linearly polarized incident plane wave are

Oa0 
= a cos 2

I md 2

0= 1a sin2 0

where 0 and 0 are polar coordinates defined with reference to the directions of

incidence and of the incident magnetic vector. These results are sufficient to

define the apparent cross section applicable to any receiving system and for any

type of incident polarization.
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